The formation of deposits on a fuel injector tip is considered a cause of particulate matter (PM) generation.Because wetting by fuel generates the deposits, reducing that adheres to the injector tip is important. In particular, coarse droplets of fuel are generated during the valve opening and closing and cause tip wetting. In this study, we have therefore investigated the effects of valve motion, especially closing and off-axis valve motion, on fuel flow in the injector nozzle by numerical simulations. The results are summarized as follows. (1) The calculated results show that low speed fuel was sprayed during valve closing. (2) Off-axis valve motion decreases the amount of fuel spray in the hole located in the opposite direction to the off-axis valve motion at the valve seating. This is caused by fuel flowing toward the off-axis valve motion in the sac volume. (3) The averaged fuel velocity at the hole outlet located in the off-axis direction with off-axis valve motion is larger than that without off-axis valve motion. During valve bouncing, the averaged fuel velocity at the hole outlet shows little differences in the presence or absence of off-axis valve motion, which indicates that off-axis valve motion for closing barely affects the fuel velocity after the valve seating.
Reduction of particulate matter (PM) in exhaust gas from automobile engines is in high demand. Fuel stuck on the engine wall causes incomplete combustion, and generates a large amount of PM. To prevent this, shape of fuel injection spray must be controlled with precision. We focused on the valve offset of the injector as a factor influencing the spray shape. Computational analysis was conducted to investigate the effects of the valve offset on inner nozzle flow and spray shape (spray direction and liquid penetration). Simulated spray behavior image, footprint, and liquid penetration agreed well with experimental results. From the inner nozzle flow simulation results with the valve offset, it was found that fuel tends to flow in the direction of the valve offset near a sac in the nozzle to provide the fuel to the holes. This flow was caused by the smaller flow path fomed in the valve offset direction. From the spray simulation results, shifts in the spray direction of the plumes were caused by the flows near the sac. Some plumes were injected in the direction opposite to the valve offset. The holes with larger drill angle located in the valve offset direction, and larger valve offset caused larger changes of spray directions. Furthermore, liquid penetration was investigated. We showed that the flow separation in the holes caused by the valve offset affects the velocity distribution at the hole outlet and results in changes of the penetration length when the drill angle is small. It was found that the valve offset causes the change in the inner nozzle flow, and results in the change of the spray shape. We concluded that the correlation of nozzle geometry and valve offset is important for controlling the spray shape.
The generation of particulate matter (PM) is one problem with gasoline direct-injection engines. PM is generated in high-density regions of fuel. Uniform air/fuel mixtures and short fuel-spray durations with multiple injections are effective in enabling the valves of fuel injectors not to wobble and dribble. We previously studied what effects the opening and closing of valves had on fuel spray behavior and found that valve motions in the opening and closing directions affected spray behavior and generated coarse droplets during the end-of-injection. We focused on the effects of valve wobbling on fuel spray behavior in this study, especially on the behavior during the end-of-injection. The effects of wobbling on fuel spray with full valve strokes were first studied, and we found that simulated spray behaviors agreed well with the measured ones. We also studied the effects on fuel dribble during end-of-injection. When a valve wobbled from left to right, the fuel dribble decreased in comparison with a case without wobbling. When a valve wobbled from the front to the rear, however, fuel dribble increased. Surface tension significantly affected fuel dribble, especially in forming low-speed liquid columns and coarse droplets. Fuel dribble was simulated while changing the wetting angle on walls from 60 to 5 deg. We found that the appearance of coarse droplets in sprays decreased during the end-of-injection by changing the wetting angles from 60 to 5 deg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.