BackgroundProtein aggregation plays a major role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. However, direct real-time imaging of protein aggregation, including oligomerization and fibrillization, has never been achieved. Here we demonstrate the preparation of fluorescent semiconductor nanocrystal (quantum dot; QD)-labeled amyloid-β peptide (QDAβ) and its advanced applications.Methodology/Principal FindingsThe QDAβ construct retained Aβ oligomer-forming ability, and the sizes of these oligomers could be estimated from the relative fluorescence intensities of the imaged spots. Both QDAβ coaggregation with intact Aβ42 and insertion into fibrils were detected by fluorescence microscopy. The coaggregation process was observed by real-time 3D imaging using slit-scanning confocal microscopy, which showed a typical sigmoid curve with 1.5 h in the lag-time and 12 h until saturation. Inhibition of coaggregation using an anti-Aβ antibody can be observed as 3D images on a microscopic scale. Microglia ingested monomeric QDAβ more significantly than oligomeric QDAβ, and the ingested QDAβ was mainly accumulated in the lysosome.Conclusions/SignificanceThese data demonstrate that QDAβ is a novel nanoprobe for studying Aβ oligomerization and fibrillization in multiple modalities and may be applicable for high-throughput drug screening systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.