The brain processes numerous information related to traffic scenes for appropriate perception, judgment, and operation in vehicle driving. Here, the strategy for perception, judgment, and operation is individually different for each driver, and this difference is thought to be arise from experience of driving. In the present work, we measure and analyze human brain activity (EEG: Electroencephalogram) related to visual perception during vehicle driving to clarify the relationship between experience of driving and brain activity. As a result, more experts generate α activities than beginners, and also confirm that the β activities is reduced than beginners. These results firstly indicate that experience of driving is reflected into the activation pattern of EEG.
In this study, we examined the degree of adaptability to new constraints after learning of a fundamental skill in juggling. Adaptation of sensorimotor synchronization with the various constraints is important for expertise. However, this adaptability may not be equivalent between coordination patterns which learners acquired in the previous learning process. In other words, there may be “asymmetric” adaptability among intrinsic patterns. Then, we examined the influence of intrinsic patterns on the adaptation of sensorimotor synchronization according to various temporal constraints. To set the adaptation task, experiment 1 was designed to examine the relationship between tempo and coordination pattern for expert jugglers. Based on experiment 1, juggling in accordance with the tempo change was performed as adaption task in experiment 2, and we compared the performances of the jugglers from the viewpoint of the intrinsic pattern. In experiment 1, participants performed juggling by adjusting catch timing to beep timing in ten conditions with the interval from 260 to 620 ms in steps of 40 ms. Results of experiment 1 presented that when the juggling tempo is fast, the coordination pattern with “rhythmic” frequency characteristics appeared. By contrast, when the tempo is slow, the coordination pattern with “discrete” frequency characteristics appeared. That is, jugglers should switch their coordination patterns when performing under various tempo conditions. In experiment 2, we compared the adaptability to perform juggling under temporal constraints among intermediate jugglers who have different intrinsic coordination patterns acquired through a previous learning process. The adaptation task required participants to adjust their catch timing to a gradually changing tempo. Participants performed juggling under two conditions: gradually ascending and descending tempo ranging from 300 to 600 ms. The results of experiment. 2 showed that participants who had a discrete pattern showed a significantly better adaptation than participants who had a rhythmic pattern. Furthermore, this result of adaptation was not related to juggling experience. This suggests that an intrinsic pattern characterized by different frequency characteristics has the different adaptability to sensorimotor synchronization tasks. Collectively, the degree of adaptability was dependent on the pattern acquired in the early stages of learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.