In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.
The extensive phenotypic polymorphism in the European whitefish has triggered evolutionary research in order to disentangle mechanisms underlying diversification. To illuminate the ecological distinctiveness in polymorphic whitefish, and evaluate taxonomic designations, we studied nine Norwegian lakes in three watercourses, which each harboured pairs of divergent whitefish morphs. We compared the morphology and life history of these morphs, documented the extent of genetic differentiation between them, and contrasted the niche use of sympatric morphs along both the habitat and resource axes. In all cases, sympatric morphs differed in the number of gill rakers, a highly heritable trait related to trophic utilization. Individual growth rate, age and size at maturity, diet and habitat use also differed between morphs within lakes, but were remarkably similar across lakes within the same morph. Microsatellite analyses confirmed for all but one pair that sympatric morphs were significantly genetically different, and that similar morphs from different lakes likely have a polyphyletic origin. These results are most compatible with the process of parallel evolution through recurrent postglacial divergence into pelagic and benthic niches in each of these lakes. We propose that sparsely and densely rakered whitefish sympatric pairs may be a likely case of ecological speciation, mediated in oligotrophic lakes with few trophic competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.