Elderly healthy individuals have a reduced exercise tolerance and a decreased left ventricle inotropic reserve related to increased vascular afterload, arterial-ventricular load mismatching, physical deconditioning and impaired autonomic regulation (the so called “β-adrenergic desensitization”). Adrenergic responsiveness is altered with aging and the age-related changes are limited to the β-adrenergic receptor density reduction and to the β-adrenoceptor-G-protein(s)-adenylyl cyclase system abnormalities, while the type and level of abnormalities change with species and tissues. Epidemiological studies have shown an high incidence and prevalence of heart failure in the elderly and a great body of evidence correlate the changes of β-adrenergic system with heart failure pathogenesis. In particular it is well known that: (a) levels of cathecolamines are directly correlated with mortality and functional status in heart failure, (b) β1-adrenergic receptor subtype is down-regulated in heart failure, (c) heart failure-dependent cardiac adrenergic responsiveness reduction is related to changes in G proteins activity. In this review we focus on the cardiovascular β-adrenergic changes involvement in the aging process and on similarities and differences between aging heart and heart failure.
Autonomic dysfunction is very common in patients with dementia, and its presence might also help in differential diagnosis among dementia subtypes. Various central nervous system structures affected in Alzheimer's disease are also implicated in autonomic nervous system regulation, and it has been hypothesized that the deficit in central cholinergic function observed in Alzheimer's disease could likely lead to autonomic dysfunction. Several feasible tests can be used in clinical practice for the assessment of parasympathetic and sympathetic functions, especially in terms of cardiovascular autonomic modulation. In this review, we describe the different tests available and the evidence from the literature which indicate a definite presence of autonomic dysfunction in dementia at various degrees. Importantly, the recognition of dysautonomia, besides possibly being an early marker of dementia, would help prevent the disabling complications which increase the risk of morbidity, institutionalization, and mortality in these individuals.
Background: Limited evidence exists regarding adverse modifications affecting cardiovascular and pulmonary function in physical active adults affected by COVID-19, especially in athletic populations. We aimed to describe the clinical presentation of COVID-19 in a cohort of competitive athletes, as well as spirometry and echocardiography findings and cardio-respiratory performance during exercise. Methods: Twenty-four competitive athletes with COVID-19 were recruited for this study after ending self-isolation and confirmation of negative laboratory results. All athletes underwent clinical evaluation, spirometry, echocardiography and cardiopulmonary exercise testing (CPET). These data were compared to a group of healthy control athletes. Results: Anosmia was the most frequent symptom present in 70.83% patients, followed by myalgia, fatigue and ageusia. The most frequent persisting symptoms were anosmia 11 (45.83%) and ageusia 8 (33.33%). Compared to controls, COVID-19 patients presented lower FEV1%: 97.5 (91.5–108) vs. 109 (106–116) p = 0.007. Peak Oxygen Uptake (VO2) in COVID-19 patients was 50.1 (47.7–51.65) vs. 49 (44.2–52.6) in controls (p = 0.618). Conclusions: Reduced exercise capacity was not identified and pulmonary and cardiovascular function are not impaired during early recovery phase in a population of physical active adults except FEV1 reduction.
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.