Bats play important functions in ecosystems and many of them are threatened with extinction. Thus, the monitoring of the health status and prevention of diseases seem to be important aspects of welfare and conservation of these mammals. The main goal of the study was the identification of culturable fungal species colonizing the wing membranes of female greater mouse-eared bat (Myotis myotis) during spring emergence from the “Nietoperek” underground hibernation site by the use of genetic and phenotypic analyses. The study site is situated in Western Poland (52°25′ N, 15°32′ E) and is ranked within the top 10 largest hibernation sites in the European Union. The number of hibernating bats in the winter exceeds 39,000 individuals of 12 species, with M. myotis being the most common one. The wing membranes of M. myotis were sampled using sterile swabs wetted in physiological saline (0.85% NaCl). Potato dextrose agar (PDA) plates were incubated in the dark at 8, 24 and 36 ± 1 °C for 3 up to 42 days. All fungi isolated from the surface of wing membranes were assigned to 17 distinct fungal isolates belonging to 17 fungal species. Penicillium chrysogenum was the most frequently isolated species. Some of these fungal species might have a pathogenic potential for bats and other mammals. However, taking into account habitat preferences and the life cycle of bats, it can be assumed that some fungi were accidentally obtained from the surface of vegetation during early spring activity. Moreover, Pseudogymnoascus destructans (Pd)—the causative agent of the White Nose Syndrome (WNS)—was not found during testing, despite it was found very often in M. myotis during previous studies in this same location.
The Orchidaceae family is a diverse family of flowering plants that occur naturally in most parts of the world. However, fungal communities inhabiting different parts of orchids are not sufficiently described. The aim of the study was to conduct a mycological evaluation of Epipactis helleborine and E. purpurata (Orchidaceae), which grow naturally in Lower Silesia (SW Poland), by identifying the species composition of the culturable micromycetes fungi on the surfaces of the plants and from the inner layers of the tissues. Fungi were identified based on a phenotypic and genotypic analysis. To our knowledge, this is the first such analysis. This study showed that more species of micromycetes were cultured from E. helleborine compared with E. purpurata. The flowering plants of E. helleborine were inhabited by the largest number of culturable fungal species (13 species), and the fewest species were isolated from the flowering plants of E. purpurata (eight species). Some of these fungal species may be pathogens of the plants. The surface tissues of the orchids were mainly inhabited by Mucor moelleri and/or Penicillium biourgeianum. The inner layers of these plants were the most colonized by Alternaria tenuissima and/or Arthrinium arundinis and/or Fusarium sporotrichioides. The relative dominance of these fungal species depended mainly on the development phase of the plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.