The aim of this study was to obtain a superhydrophobic coating by modifying anodized aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were treated by abrasive blasting, anodization in sulfuric acid, impregnation by PDMS, rinsing in toluene to remove excess of PDMS, and curing. A rough surface with an additional low free energy layer on it resulted in a superhydrophobic effect. The coating obtained has an average contact angle of 159°. The specimens were tested in terms of durability in natural conditions. Additionally, anti-icing and anti-fouling properties were evaluated. The coating was compared with anodized aluminum obtained by a basic process.
The aim of this work was to obtain high velocity of oxide coatings growth in the process of anodic oxidation of aluminium. Three different processes of oxidation were investigated. The coatings thickness, hardness and sealing quality were examined. The forming velocity of coatings was about 1 µm/min, much higher than obtained by conventional method of anodizing for anticorrosive purpose. The future scopes of application of elaborated processes were described.
The method of anodic oxidation of stainless steel and the subsequent deposition of carbon layers in the CVD processes resulted in obtaining the coatings with hydrophobic and superhydrophobic properties. The parameters of the CVD process were modified and various carbon structures, including graphene type ones, were obtained. The coatings were characterised by Raman spectra and SEM microscopy. The wettability of the surface was evaluated by investigating a contact angle. The samples containing carbon coatings showed hydrophobic properties, and those containing graphene structures were characterized by the contact angle greater than 150°, which means superhydrophobic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.