Glycidyl azide polymer (GAP), an energetic binder, is the focus of this review. We briefly introduce the key properties of this well-known polymer, the difference between energetic and non-energetic binders in propellant and explosive formulations, the fundamentals for producing GAP and its copolymers, as well as for curing GAP using different types of curing agents. We use recent works as examples to illustrate the general approaches to curing GAP and its derivatives, while indicating a number of recently investigated curing agents. Next, we demonstrate that the properties of GAP can be modified either through internal (structural) alterations or through the introduction of external (plasticizers) additives and provide a summary of recent progress in this area, tying it in with studies on the properties of such modifications of GAP. Further on, we discuss relevant works dedicated to the applications of GAP as a binder for propellants and plastic-bonded explosives. Lastly, we indicate other, emerging applications of GAP and provide a summary of its mechanical and energetic properties.
Significant incentives for developing and introducing new energetic materials to the industrial-scale production and application of new energetic materials have stimulated extensive research on the subject. Despite numerous studies, which have reported a broad array of results, progress in this field remains limited as the research results do not translate into commensurate practical applications. Coordination energetic materials are one of the promising classes of such materials. Despite more than two decades of research efforts dedicated to these substances and their advantages over classical energetic materials, in terms of performance parameters and safety parameters, these materials have not found any broader practical application. In this work, selected representative literature reports dedicated to these materials have been analysed in order to present the possible reasons for this state. Some suggestions about the future direction of research and development efforts dedicated to coordination energetic materials have also been formulated. The publication is one voice in the discussion on new challenges related to the search for new lead-free explosives.
Dye-sensitized solar cells (DSSCs) are a novel solar cell alternative characterized by lower toxicity by using coordination transition metal compounds while providing high performance benchmarks, such as power conversion efficiency. Particular attention should be paid to compounds containing Cu, which can act both as dyes and as redox mediators, even though compounds relying on other transition metals are also frequently reported. In this paper, examples of compounds containing transition metals in combination with several ligands are presented, and their basic photovoltaic parameters are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.