Abstract. In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (∼ 76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76 % of the experimental sites with agricultural land use as the dominant type (∼ 40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it.
The shrinkage of the peat soils that accompanies the soil moisture changes is an important feature of such soils and has strong influence on their physical attributes and soil water management. The relationships between soil moisture and volume are often described using shrinkage characteristic curves by relating void ratio (volume of voids per unit volume of solids) to moisture ratio (volume of water per volume of solids). For conversion of soil volume changes into cracks volume and subsidence, a dimensionless shrinkage geometry factor is used. The paper presents results of volumetric shrinkage behavior and the geometry factor at various loads in sedge and alder peat soils. The measurements were conducted on undisturbed soil samples without applying a load and with loads corresponding to field overburden. The shape of the shrinkage characteristics of such soils were completely different from those of clay soils. The application of loads did not significantly influence the shrinkage characteristics curve. The applied load strongly influenced on relationship between shrinkage geometry factor and the moisture ratio, showing higher values of subsidence and lower values of crack volume in comparison with unloaded conditions.
Abstract. In this paper, we present and analyze a global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and USA. In addition to its global spatial coverage, the collected infiltration curves cover a time span of research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use were gathered along with the infiltration data, which makes the database valuable for the development of pedo-transfer functions for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76 %) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on the land use is available for 76 % of experimental sites with agricultural land use as the dominant type (~40 %). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for use by public domain only and can be copied freely by referencing it. Supplementary data are available at doi:10.1594/PANGAEA.885492. Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend/update the SWIG by uploading new data to it.
Field capacity is one of the most frequently used soil parameters. According to the original definition, the field capacity is a site-specific parameter, which is closely connected to soil water flux. Many of the existing procedures for field-capacity estimation neglect its flux-based character. In this study, a method and selected results are presented. This allows a better reflection of the unsteady behavior of unsaturated water flow in estimating field capacity. Based on the velocity of the relative internal drainage, a threshold value is defined (field-capacity threshold) which enables a flux-based estimation of the field-capacity value. Furthermore, the direct consideration of the drainage time allows the soil water contents to be estimated for defined internal drainage durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.