Cermet Ni/YSZ electrodes are the most commonly applied fuel electrode for solid oxide cells (SOC) both when targeting solid oxide fuel cell (SOFC) applications and when used as solid oxide electrolysis cell (SOEC). In this work we report on the correlation between initial Ni/YSZ microstructure and the resulting electrochemical performance both initially and during long-term electrolysis testing at high current density and high p(H2O) inlet. Especially, this work focuses on microstructure optimization to hinder Ni mobility and migration during long-term operation and illustrates the key-role of electrode over-potential on the degradation of the Ni/YSZ electrodes in SOEC. We find that for long-term stability for electrolysis at high current densities and high p(H2O) the as-produced NiO/YSZ precursor electrode should be: 1) As dense as possible, 2) as fine particle and pore sized as possible and 3) the three phases (Ni, YSZ and pore phase) shall be size-matched and welldispersed. Applying such microstructure optimized Ni/YSZ electrode we show SOEC test results with long-term degradation rate as low as 0.3-0.4 %/kh at 1 A/cm 2 , 800 C and inlet gas mixture of p(H2O)/p(H2):90/10. This enables SOEC operation of such cell for more than 5 years below thermo-neutral potential at these operating conditions.
The aggregation properties of zinc-free insulin have been studied using static and dynamic light scattering. The aggregation has been investigated as a function of three parameters, the concentration of sodium chloride (in the range 10-100 mM), the pH value (in the range pH 7.5-10.5), and the insulin concentration (1.8-13.4 mg/mL). The measured homodyne autocorrelation function was used to determine the apparent mean hydrodynamic diameter as well as the apparent weight-averaged molar mass of the insulin species in solution. A method of data analysis was employed, which allows the separation of light scattering contributions from the insulin oligomers and from irrelevant macromolecules and possible impurities present in the sample solutions. Also, a simple phenomenological equilibrium model describing the association of oligomers of insulin is presented. One aspect of this model is that it makes it possible to determine weight average molar masses corrected for virial effects on the Rayleigh ratio. This was necessary because virial effects cannot be isolated and corrected for by dilution since this would change the equilibrium distribution of oligomers. The basis of the model is a positive contribution to Gibbs free energy from charge repulsion depending on the protein charge and the number of monomers in the oligomers, and an assumed constant negative contribution to Gibbs free energy arising from either an entropic gain or hydrogen bonding upon association. The equilibrium model gives a good description of both the apparent weight average molar masses and the apparent hydrodynamic diameters, when the effect of the insulin concentration is taken into account by including virial effects arising from charge-charge repulsion (Donnan effect). The result shows that the association of insulin as a function of pH and ionic strength can be described by an effective charge equal to the charge derived from proton titration reduced by the number of sodium ions binding to insulin. At the lowest pH and highest salt concentration (pH 7.5, 100 mM NaCl, 12 mg/mL insulin), the weight average molar mass is close to that of the hexamer, and at the highest pH and lowest salt concentration (pH 10.5, 10 mM NaCl, 1.9 mg/mL), the weight average molar mass is close to that of the monomer. In all cases, however, a distribution of oligomers is present with a relative Gaussian width of about 30%.(ABSTRACT TRUNCATED AT 400 WORDS)
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported SOFC, electrode material from the active anode layer may interdiffuse with the metallic support during sintering. The purpose of this work is to illustrate how the interdiffusion problem can be circumvented by using an alternative anode design based on porous and electronically conducting layers, into which electrocatalytically active materials are infiltrated after sintering. The paper presents the recent results on the electrochemical performance and durability of the novel planar metal-supported SOFC design. The results presented in the paper show that the novel cell and anode design has a promising performance and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.