Purpose -The overall aim of this research work was the improvement of the failure behavior of printed circuit boards (PCBs). In order to describe the mechanical behavior of PCBs under cyclic thermal loads, thin copper layers were characterized. The mechanical properties of these copper layers were determined in cyclic four-point bend tests and in cyclic tensile-compression tests, as their behavior under changing tensile and compression loads needed to be evaluated. Design/methodology/approach -Specimens for the four-point bend tests were manufactured by bonding 18-mm-thick copper layers on both sides of 10-mm-thick silicone plates. The silicone was characterized in tensile, shear and blow-up tests to provide input data for a hyperelastic material model. Specimens for the cyclic tensile-compression tests were produced in a compression molding process. Four layers of glass fiber-reinforced epoxy resin (thickness 90 mm) and five layers of copper (thickness 60 mm) were applied. Findings -The results showed that, due to the hyperelastic material behavior of silicone, the four-point bend tests were applicable only for small strains, while the cyclic tensile-compression tests could successfully be applied to characterize thin copper foils in tensile and compression up to 1 percent strain. Originality/value -Thin copper layers (foils) could be characterized successfully under cyclic tensile and compression loads. Figure 17 Stabilized force-strain curves, asymmetric loading Note: The lower load level is given in the legend Cyclic characterization of thin copper layers K. Fellner et al.
In printed circuit boards, thin copper layers are used as current paths. During the thermal loading of printed circuit boards, stresses arise due to the different coefficients of thermal expansion of the used materials. To be able to model the mechanical behavior of printed circuit boards under cyclic thermal loads, cyclic mechanical tests of thin copper foils under changing tensile and compression loads at different temperatures were conducted. From these experiments, the isotropic and kinematic hardening parameters were determined serving as material input data for a nonlinear isotropic/ kinematic hardening model in the finite element analysis-software Abaqus. The kinematic hardening parameters were fitted in an optimization process. The isotropic hardening variables were determined based on the stress versus plastic strain relationship that was constructed incrementally from the available individual cycles. The so-obtained curve was found to be not unique, but to depend on the loading situation. Hence, different approaches for strain range memorization were evaluated. Since these approaches were developed for modeling strain-controlled tests, whereas the experimental data were obtained in a force-controlled way, a phenomenological formulation was developed and applied. The results of curvature measurements during thermal cycling were used for model validation. The experimental results and the numerical predictions are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.