This paper presents a typology of errors produced by automatic summarization systems. The typology was created by manually analyzing the output of four recent neural summarization systems. Our work is motivated by the growing awareness of the need for better summary evaluation methods that go beyond conventional overlap-based metrics. Our typology is structured into two dimensions. First, the Mapping Dimension describes surface-level errors and provides insight into word-sequence transformation issues. Second, the Meaning Dimension describes issues related to interpretation and provides insight into breakdowns in truth, i.e., factual faithfulness to the original text. Comparative analysis revealed that two neural summarization systems leveraging pretrained models have an advantage in decreasing grammaticality errors, but not necessarily factual errors. We also discuss the importance of ensuring that summary length and abstractiveness do not interfere with evaluating summary quality.
Audio features have been proven useful for increasing the performance of automated topic segmentation systems. This study explores the novel task of using audio embeddings for automated, topically coherent segmentation of radio shows. We created three different audio embedding generators using multi-class classification tasks on three datasets from different domains. We evaluate topic segmentation performance of the audio embeddings and compare it against a text-only baseline. We find that a set-up including audio embeddings generated through a non-speech sound event classification task significantly outperforms our text-only baseline by 32.3% in F1-measure. In addition, we find that different classification tasks yield audio embeddings that vary in segmentation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.