The susceptibility of the tree shrew Tupaia belangeri to human hepatitis B virus (HBV) has been demonstrated both in vivo and in vitro. In this study, we show that purified HBV infects primary T. belangeri hepatocyte cultures in a very specific manner, as detected by HBV covalently closed circular DNA, mRNA, HBV e antigen, and HBsAg production. A monoclonal antibody (MAb), MA18/7, directed against the pre-S1 domain of the large HBs protein, which has been shown to neutralize infectivity of HBV for primary human hepatocytes, also blocked infection of primary Tupaia hepatocytes. MAbs against the pre-S2 domain of HBs inhibited infection only partially, whereas an S MAb and polyvalent anti-HBs antibodies neutralized infection completely. Thus, both pre-S1 and S antigens are necessary for infection in the tupaia. Using subviral particles, >70% of primary Tupaia hepatocytes are capable of specific binding of pre-S1-rich HBsAg, showing localization in distinct membrane areas. The data show that the early steps of HBV infection in Tupaia hepatocyte cultures are comparable to those in the human system.
Patients with mild forms of peroxisomal biogenesis disorders show facial dysmorphism and exhibit dentition problems accompanied by enamel hypoplasia. However, no information is available on the role of peroxisomes in dental and paradontal tissues. Therefore, we studied the distribution of these organelles, their protein composition and the expression of corresponding genes during dental development and in mature decalcified teeth in mice. Perfusion-fixed heads of mice of different developmental stages (E13.5 to adult) were cut in sagittal direction into two halves and embedded in paraffin for serial sectioning and subsequent peroxidase-based immunohistochemistry or double-immunofluorescence preparations. Frozen, unfixed heads of newborn mice were used for cryosectioning and subsequent laser-assisted microdissection of ameloblasts and odontoblasts, RNA isolation and RT-PCR analysis. Our results revealed the presence of peroxisomes already in the bud stage of dental development. An increase in peroxisome abundance was noted during differentiation of ameloblasts and odontoblasts with the highest number of organelles in Tomes' processes of mature ameloblasts. A strong heterogeneity of peroxisomal enzyme content developed within differentiated dental cell types. A drastic down-regulation of catalase in maturing ameloblasts was noted in contrast to high levels of lipid metabolizing enzymes in peroxisomes of these cells. As known from the literature, differentiated ameloblasts are more prone to oxidative damage which could be explained by the low catalase levels inside of this cell type.
Macroscopic identification and surgical removal of the mouse parotid gland is demanding because of its anatomic location and size. Moreover, the mouse parotid gland contains high concentrations of RNases, making it difficult to isolate high-quality RNA. So far, appropriate methods for optimal perfusion-fixation and dissection of mouse parotid glands, as well as the isolation of high quality RNA from this tissue, are not available. Here we present a simple, optimized, step-by-step surgical method to perfuse and isolate murine parotid glands. We also compared two common RNA extraction methods (RNeasy Mini Kit versus TRIzol) for their yields of high-quality, intact RNA from human and murine parotid gland tissues that were either snap-frozen or immersed in RNAlater stabilization solution. Mouse parotid tissue that was perfused and immersed in RNAlater and human samples immersed in RNAlater exhibited the best RNA quality, independent of the isolation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.