articles epidemiology led to the hypothesis that Methanobrevibacter smithii may be a therapeutic target for the reduction of energy harvest in obese humans (25,26), as M. smithii is the major representative of the human gut methanogens (27).The purpose of this study was to investigate whether the proposed role of SCFA and microbiota composition in obesity, which was based on proof of principle experiments, can be confirmed in a larger study which did not exclude all confounding factors. Methods and Procedures Volunteer recruitmentLean and obese volunteers of both sexes were recruited from the Institute of Microecology and from the obesity consultation hours at the University of Giessen and Marburg. In total 98 volunteers (34 males and 64 females) took part in the study. All of the samples collected were analysed. The volunteers were aged 47 ± 13 year (mean ± s.e.m.: range 14-74 year). The BMI in kg/m 2 of 30 volunteers was within the normal range (18.5-24.9), while 35 were overweight (25.0-29.9) and 33 were obese (≥30.0). Of the latter, 17 were classified as obesity class 1 (30-35), 11 as class 2 (35-40), and 5 as class 3 (>40). No antibiotics had been taken in the 6 months prior to the study. All participants subsisted primarily on a western diet and all volunteers provided informed, signed consent.
Abstract. The mixing layer is an important meteorological factor that affects air pollution. In this study, the atmospheric mixing layer height (MLH) was observed in Beijing from July 2009 to December 2012 using a ceilometer. By comparison with radiosonde data, we found that the ceilometer underestimates the MLH under conditions of neutral stratification caused by strong winds, whereas it overestimates the MLH when sand-dust is crossing. Using meteorological, PM2.5, and PM10 observational data, we screened the observed MLH automatically; the ceilometer observations were fairly consistent with the radiosondes, with a correlation coefficient greater than 0.9. Further analysis indicated that the MLH is low in autumn and winter and high in spring and summer in Beijing. There is a significant correlation between the sensible heat flux and MLH, and the diurnal cycle of the MLH in summer is also affected by the circulation of mountainous plain winds. Using visibility as an index to classify the degree of air pollution, we found that the variation in the sensible heat and buoyancy term in turbulent kinetic energy (TKE) is insignificant when visibility decreases from 10 to 5 km, but the reduction of shear term in TKE is near 70 %. When visibility decreases from 5 to 1 km, the variation of the shear term in TKE is insignificant, but the decrease in the sensible heat and buoyancy term in TKE is approximately 60 %. Although the correlation between the daily variation of the MLH and visibility is very poor, the correlation between them is significantly enhanced when the relative humidity increases beyond 80 %. This indicates that humidity-related physicochemical processes is the primary source of atmospheric particles under heavy pollution and that the dissipation of atmospheric particles mainly depends on the MLH. The presented results of the atmospheric mixing layer provide useful empirical information for improving meteorological and atmospheric chemistry models and the forecasting and warning of air pollution.
Abstract. With the establishment of ceilometer networks by national weather services, a discussion commenced to which extent these simple backscatter lidars can be used for aerosol research. Though primarily designed for the detection of clouds it was shown that at least observations of the vertical structure of the boundary layer might be possible. However, an assessment of the potential of ceilometers for the quantitative retrieval of aerosol properties is still missing. In this paper we discuss different retrieval methods to derive the aerosol backscatter coefficient β p , with special focus on the calibration of the ceilometers. Different options based on forward and backward integration methods are compared with respect to their accuracy and applicability. It is shown that advanced lidar systems such as those being operated in the framework of the European Aerosol Research Lidar Network (EARLINET) are excellent tools for the calibration, and thus β p retrievals based on forward integration can readily be implemented and used for real-time applications. Furthermore, we discuss uncertainties introduced by incomplete overlap, the unknown lidar ratio, and water vapor absorption. The latter is relevant for the very large number of ceilometers operating in the spectral range around λ = 905-910 nm. The accuracy of the retrieved β p mainly depends on the accuracy of the calibration and the long-term stability of the ceilometer. Under favorable conditions, a relative error of β p on the order of 10 % seems feasible. In the case of water vapor absorption, corrections assuming a realistic water vapor distribution and laser spectrum are indispensable; otherwise errors on the order of 20 % could occur. From case studies it is shown that ceilometers can be used for the reliable detection of elevated aerosol layers below 5 km, and can contribute to the validation of chemistry transport models, e.g., the height of the boundary layer. However, the exploitation of ceilometer measurements is still in its infancy, so more studies are urgently needed to consolidate the present state of knowledge, which is based on a limited number of case studies.
Oscillating membrane potentials that generate rhythmic impulse patterns are considered to be of particular significance for neuronal information processing. In contrast, noise is usually seen as a disturbance which limits the accuracy of information transfer. We show here, however, that noise in combination with intrinsic oscillations can provide neurons with particular encoding properties, a discovery we made when recording from single electro-sensory afferents of a fish. The temporal sequence of the impulse trains indicates oscillations that operate near the spike-triggering threshold. The oscillation frequency determines the basic rhythm of impulse generation, but whether or not an impulse is actually triggered essentially depends on superimposed noise. The probability of impulse generation can be altered considerably by minor modifications of oscillation baseline and amplitude, which may underlie the exquisite sensitivity of these receptors to thermal and electrical stimuli. Additionally, thermal, but not electrical, stimuli alter the oscillation frequency, allowing dual sensory messages to be conveyed in a single spike train. These findings demonstrate novel properties of sensory transduction which may be relevant for neuronal signalling in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.