A new optical disdrometer has been developed that is optimized for use in high wind speeds, for example, on board ships. The minimal detectable size of droplets is 0.35 mm. Each drop is measured separately with regard to its size and residence time within the sensitive volume. From the available information, the drop size distribution can be calculated with a resolution of 0.05 mm in diameter either by evaluation of the residence time of drops or by drop counting knowing the local wind. Experience shows that using the residence time leads to better results. Rain rates can be determined from the droplet spectra by assuming terminal fall velocity of the drops according to their size. Numerical modeling of disdrometer measurements has been performed, allowing the study of the effect of multiple occupancy of the sensitive volume and grazing incidences on disdrometer measurements. Based on these studies an iterative procedure has been developed to eliminate the impact of these effects on the calculated drop size distributions. This technique may also be applied to any other kind of disdrometer. Long-term simultaneous measurements of the disdrometer and a conventional rain gauge have been used to validate this procedure.
A ship rain gauge has been developed that can be used under high wind speeds such as those experienced by ships at sea. The instrument has an improved aerodynamic design and an additional lateral collecting surface, which is effective especially with high wind speeds. The ship rain gauge has been calibrated at sea against a specially designed optical disdrometer. An accuracy of 2%-3% has been obtained for 6-hourly sums. The ship rain gauge has also successfully been tested at a test site of the German Weather Service and presently is used on research vessels and voluntary observing ship.
Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the ocean, and are subject to large errors when sensors are exposed to marine air containing spray droplets. All currently available commercial measurement devices for atmospheric humidity require frequent maintenance. Included in the objectives of the Humidity Exchange over the Sea program were testing and comparison of sensors used for measuring both the fluctuating and mean humidity in the marine atmosphere at high wind speeds and development of techniques for the protection of these sensors against contamination by oceanic aerosols. These sensors and droplet removal techniques are described and comparisons between measurements from several different systems are discussed in this paper. To accomplish these goals, participating groups devised and tested three methods of removing sea spray from the sample airstream. The best performance was given by a rotating screen device, the "spray flinger." Several high-frequency temperature and humidity instruments, based on different physical principles, were used in the collaborative field experiment. Temperature and humidity fluctuations were measured with sufficient accuracy inside the spray removal devices using Lyman-a hygrometers and a fast thermocouple psychrometer. Comparison of several types of psychrometers (using electric thermometers) and a Rotronic MP-100 humidity sensor for measuring the mean humidity illustrated the hysteresis of the Rotronic MP-I 00 device after periods of high relative humidity. Confidence in the readings of the electronic psychrometer was established by in situ calibration with repeated and careful readings of ordinary hand-held Assman psychrometers (based on mercury thermometers). Electronic psychrometers employing platinum resistance thermometers perform very well.
Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of momentum. The resulting drag coefficients agree well with earlier findings. Sensible heat fluxes were computed using both cross-correlation and inertial dissipation techniques. There is good agreement between results from both methods, although there is more scatter in the correlation fluxes than the dissipation fluxes. The inertial dissipation method gives reasonable results even under conditions of high wind speeds and low air temperatures, which combined with the relatively warm sea surface temperatures lead to sensible heat fluxes of several hundred watts per square meter. Sensible heat fluxes obtained from the sonic anemometer measurements agree well with bulk turbulent fluxes according to the formulation of Isemer and Hasse.
Der vorliegende Aufsatz beschreibt die Funktion eines Meß-systems, das für ein spezielles Aufgabengebiet, dieMikrometeorologie, entwickelt wurde. In den einzelnen Abschnitten wird zunächst die Aufgabenstellung umrissen dann werden die einzelnen Systemkomponenten kurz erläutert. Dieses sind die Datensammelanlage, die Empfangsanlage und die frequenzanalog arbeitenden Meßwandler. Im letzten Abschnitt wird der Aufbau einer Meßstation in der Ostsee beschrieben. Eine Plotterausgabe von Meßwerten vervollstän-digt diese Darstellung.The following paper describes the properties of a measuring system, which was designed for the solution of special problems in micrometeorology. First these problems are outlined and then the system components are illustrated. The latter are the data accumulation device, the receiver station, and the frequency analog measuring transducers. The design of a measuring buoy used in the Baltic Sea is shown. An example of plotting data is given in order to complete this description.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.