Mistletoe lectin I (pML) and its isoforms ML II and III constitute the active principle in extract preparations from mistletoe, commonly used as immunomodulator in adjuvant tumour therapy. The heterodimeric disulfide-linked cytotoxic protein is classified as type II ribosome inactivating protein (RIP). Recently, the sequence coding for the mistletoe lectin prepro-protein was identified and the existence of a single intron-free gene was shown [Eck, J., Langer, M., Mo Èckel, B., Baur, A., Rothe, M., Zinke, H. & Lentzen, H. (1999) Eur. J. Biochem. 264, 775± 784].The aim of this study was to prepare pure and homogeneous rMLB-chain as well as rML heterodimer for studying the carbohydrate binding specificity of recombinant versus natural protein and its contribution to the observed cytotoxic effect. Expression in E. coli resulted in the production of insoluble protein (inclusion bodies). A procedure for generating correctly folded, biochemically and biologically active rMLB was established starting from the insoluble single chain. Carbohydrate binding and specificity of pMLB and rMLB were analysed by a competitive enzyme linked lectin assay (ELLA). Asialofetuin was able to compete with binding of both chains (50% at 0.8 mm). The specificity of the B-chains to lactose was more distinct with halfmaximal competition at 4.9 mm (pMLB) and . 90 mm (rMLB), respectively.Furthermore, in a coassociation process rMLA-and rMLB inclusion bodies were associated in one step by defined dilution yielding active rML-heterodimer. The activities of recombinant (rML) and plant derived mistletoe lectin (pML) were compared. Cytotoxicity was determined using MOLT-4 cells and enzymatic rRNA N-glycosidase activity was measured in a coupled transcription/translation assay. The IC 50 values of the two heterodimers were similar in both assays; rMLB-chain did not show any cytotoxic effect. In the ELLA with lactose as a competitor 50% competition of binding to asialofetuin was achieved at 1.6 mm (rML) and 1.8 mm (pML). Hence, using three different assays we found no significant differences between the recombinant protein and the glycosylated form of ML. Comparing the biological activities of the single chains with those of the heterodimer we conclude, that both, lectin activity and the rRNA N-glycosidase activity, are prerequisites for the cytotoxic effects on target cells. Mistletoe lectins type I, II and III are a group of glycosylated, 56±64 kDa cytotoxic proteins, which consist of two covalently cystine linked subunits. The A-chain mediates the enzymatic inactivation of eucaryotic ribosomes and the B-chain is responsible for carbohydrate binding [17] and therefore mistletoe lectin belongs to the type II ribosome inactivating proteins (RIP II) [18]. Interestingly, the specificity of carbohydrate binding varies between the three species with ML I being mainly specific for d-galactose and ML III for N-acetyl-d-galactosamine [19,20]. Both, ML I and ML III mediated cytotoxicity can be strongly reduced by b-d-lactose as a competitor [21]. ML III, ho...
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.
The anticancer drug rViscumin, currently under clinical development, has been shown in previous studies to be a sialic acid specific ribosome inactivating protein (RIP). Comparative binding assays with the CD75s-specific monoclonal antibodies HB6 and J3-89 revealed rViscumin to be a CD75s-specific RIP due to identical binding characteristics toward CD75s gangliosides. The receptor gangliosides are IV6nLc4Cer, VI6nLc6Cer, and the newly characterized ganglioside VIII6nLc8Cer, all three carrying the Neu5Acalpha2-6Galbeta1-4GlcNAc motif. To elucidate the clinical potential of the rViscumin targets, CD75s gangliosides were determined in several randomly collected gastrointestinal tumors. The majority of the tumors showed an enhanced expression of CD75s gangliosides compared with the unaffected tissues. The rViscumin binding specificity was further investigated with reference glycoproteins carrying sialylated and desialylated type II N-glycans. Comparative Western blots of rViscumin and ricin, an rViscumin homologous but galactoside-specific RIP, revealed specific recognition of type II N-glycans with CD75s determinants by rViscumin, whereas ricin failed to react with terminally sialylated oligosaccharides such as CD75s motifs and others. This strict binding specificity of rViscumin and the increased expression of CD75s gangliosides in various tumors suggest this anticancer drug as a promising candidate for an individualised adjuvant therapy of human tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.