The majority of online display ads are served through real-time bidding (RTB)
--- each ad display impression is auctioned off in real-time when it is just
being generated from a user visit. To place an ad automatically and optimally,
it is critical for advertisers to devise a learning algorithm to cleverly bid
an ad impression in real-time. Most previous works consider the bid decision as
a static optimization problem of either treating the value of each impression
independently or setting a bid price to each segment of ad volume. However, the
bidding for a given ad campaign would repeatedly happen during its life span
before the budget runs out. As such, each bid is strategically correlated by
the constrained budget and the overall effectiveness of the campaign (e.g., the
rewards from generated clicks), which is only observed after the campaign has
completed. Thus, it is of great interest to devise an optimal bidding strategy
sequentially so that the campaign budget can be dynamically allocated across
all the available impressions on the basis of both the immediate and future
rewards. In this paper, we formulate the bid decision process as a
reinforcement learning problem, where the state space is represented by the
auction information and the campaign's real-time parameters, while an action is
the bid price to set. By modeling the state transition via auction competition,
we build a Markov Decision Process framework for learning the optimal bidding
policy to optimize the advertising performance in the dynamic real-time bidding
environment. Furthermore, the scalability problem from the large real-world
auction volume and campaign budget is well handled by state value approximation
using neural networks.Comment: WSDM 201
An ever increasing volume of data is nowadays becoming available in a streaming manner in many application areas, such as, in critical infrastructure systems, finance and banking, security and crime and web analytics. To meet this new demand, predictive models need to be built online where learning occurs on-the-fly. Online learning poses important challenges that affect the deployment of online classification systems to real-life problems. In this paper we investigate learning from limited labelled, nonstationary and imbalanced data in online classification. We propose a learning method that synergistically combines siamese neural networks and active learning. The proposed method uses a multi-sliding window approach to store data, and maintains separate and balanced queues for each class. Our study shows that the proposed method is robust to data nonstationarity and imbalance, and significantly outperforms baselines and state-of-the-art algorithms in terms of both learning speed and performance. Importantly, it is effective even when only 1% of the labels of the arriving instances are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.