The connection of low power renewable energy sources, such as fuel cells, to the distribution generation system requires power electronics structures with high voltage gain, high capability to power processing and consequently, high levels of current flowing through the dc/dc converter. In this context, this study analyses how the parasitic resistances of the passive components and the load power demand affect the dc/dc converter voltage gain. Taking into account the mathematical model, the boundaries of operation of the Interleaved Boost with Voltage Multiplier converter is determined through a set of equations and by means of a graphical analysis. The theoretical analysis, simulations and experimental results are used to validate the proposed approach presented in this study.
This paper presents a method for Energy Storage Systems (ESSs) equalization and energy management in dc microgrids (MGs) with slow dynamic sources, such as Fuel Cells (FCs). The three main features of this method are the ESSs equalization, the energy management between the ESSs and the FC, and the ability to suppress fast transients of load, preventing damages in the FC. The equalization is performed using a State of Charge (SoC)-Sharing Function, which is based on a Sigmoid Function (SF). The SoC-Sharing Function is designed similarly to the droop controller, therefore, it is suitable for operation in droop based MGs. Additionally, the ability to suppress fast transients of load is performed by adding a low pass filter in the FC control loop. The main advantages of this method are the SF smooth behavior and the lack of need for a high-speed link of communication between the sources. To evaluate the MG stability, the Lyapunov's Indirect Method is applied in the MG model considering different scenarios varying the SoC and load connected to the dc-link. Finally, the model is validated by comparing simulation and experimental results supplied by a lab-scale prototype. INDEX TERMS Energy storage system, dc microgrid, equalization method, fuel cell, energy management. MAURICIO BICZKOWSKI received the B.S. degree in electrical engineering and the degree of specialist in energy efficiency from the Fed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.