Dynamic contrast enhanced MRI (DCE-MRI) provides insight into the vascular properties of tissue. Pharmacokinetic models may be fitted to DCE-MRI uptake patterns, enabling biologically relevant interpretations. The aim of our study was to determine whether treatment outcome for 81 patients with locally advanced cervical cancer could be predicted from parameters of the Brix pharmacokinetic model derived from pre-chemoradiotherapy DCE-MRI. First-order statistical features of the Brix parameters were used. In addition, texture analysis of Brix parameter maps was done by constructing gray level co-occurrence matrices (GLCM) from the maps. Clinical factors and first- and second-order features were used as explanatory variables for support vector machine (SVM) classification, with treatment outcome as response. Classification models were validated using leave-one-out cross-model validation. A random value permutation test was used to evaluate model significance. Features derived from first-order statistics could not discriminate between cured and relapsed patients (specificity 0%-20%, p-values close to unity). However, second-order GLCM features could significantly predict treatment outcome with accuracies (~70%) similar to the clinical factors tumor volume and stage (69%). The results indicate that the spatial relations within the tumor, quantified by texture features, were more suitable for outcome prediction than first-order features.
Multispectral imaging of autofluorescence was carried out to investigate the feasibility of mapping the degree of lipid oxidation in ground chicken meat. Meat samples from both breast and thighs were collected from 32 chickens, ground and freeze-stored for different time intervals. Sixteen samples were imaged at the time, making up two sets of multispectral images, A and B. Lipid oxidation was measured by a method using 2-thiobarbituric acid reactive substances (TBARS), and samples were in the range 0.15–3.23. Principal component analysis was performed on image set A, and variation in score images of the two first components corresponded well with lipid oxidation reference values. The multivariate image regression model based on image set A was tested on set B. Pixel-wise prediction gave large individual errors, but averaging predicted values within samples improved accuracy and resulted in a correlation of 0.98. Increasing the amount of spatial variation (number of pixel vectors) in the regression models led to more robust models with lower prediction errors. The technique has potential for nondestructive investigation of distribution and kinetics of lipid oxidation in food.
In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Material and methods: Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and m e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. Results: One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. Conclusion: We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.