A novel mixed micelle with a multifunctional core and shell is successfully prepared from a graft copolymer, poly(N‐isopropyl acrylamide‐co‐methacrylic acid)‐g‐poly(d,l‐lactide) (P(NIPAAm‐co‐MAAc)‐g‐PLA) and two diblock copolymers, poly(ethylene glycol)‐b‐poly(d,l‐lactide) and poly (2‐ethyl‐2‐oxazoline)‐b‐poly(d,l‐lactide). This nanostructure completely screens the highly negative charges of the graft copolymer and exhibits multifunctionality because it has a specialized core/shell structure. An example of this micelle structure used in intracellular drug delivery demonstrates a strong relationship between drug release and the functionality of the mixed micelle. Additionally, the efficiency of the screening feature is also displayed in the cytotoxicities; mixed micelles exhibit higher drug activity and lower material cytotoxicity than micelles from P(NIPAAm‐co‐MAAc)‐g‐PLA ([NIPAAm]/[MAAc]/[PLA] = 84:5.9:2.5 mol/mol) copolymer. This study not only presents a new micelle structure generated using a graft–diblock copolymer system, but also elucidates concepts upon which the preparation of a multifunctional micelle from a graft copolymer with a single (or many) diblock copolymer(s) can be based for applications in drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.