Second-generation glucose biosensors are presently the mainstream commercial solution for blood glucose measurement of diabetic patients. Screen-printed carbon electrodes (SPCEs) are the most-used substrate for glucose testing strips. This study adopted hydrophilic and positively charged α-poly-l-lysine (αPLL) as the entrapment matrix for the immobilization of negatively charged glucose oxidase (GOx) and ferricyanide (FIC) on SPCEs to construct a disposable second-generation glucose biosensor. The αPLL modification is shown to facilitate the redox kinetics of FIC and ferrocyanide on the SPCEs. The SPCEs coated with 0.5 mM GOx, 99.5 mM FIC, and 5 mM αPLL had better sensitivity for glucose detection due to the appreciable effect of protonated αPLL on the promotion of electron transfer between GOx and FIC. Moreover, the SPCEs coated with 0.5 mM GOx, 99.5 mM FIC, and 5 mM αPLL were packaged as blood glucose testing strips for the measurement of glucose-containing human serum samples. The glucose testing strips had good linearity from 2.8 mM to 27.5 mM and a detection limit of 2.3 mM. Moreover, the 5 mM αPLL-based glucose testing strips had good long-term stability to maintain GOx activity in aging tests at 50 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.