The equilibrium methanol-induced conformation changes of holomyoglobin (hMb) at pH 4.0 have been studied by circular dichroism, tryptophan fluorescence, and Soret band absorption and by electrospray ionization mass spectrometry (ESI-MS). Optical spectra show the following: (1) In 35-40% (v/v) methanol/water, the native-like secondary structure remains, the tertiary structure is lost, the heme protein interactions are decreased, and a folding intermediate is formed. (2) In 50% methanol, heme is lost from the protein, and there is a small decrease in helicity together with a loss of tertiary structure. (3) At >60% methanol, the helicity increases and the apoprotein goes into a helical denatured state. The conformations are also probed by the charge states produced in ESI-MS and by hydrogen/deuterium (H/D) exchange with mass measurement by ESI-MS. At 0-30% methanol, native hMb produces relatively low charge states (9(+)-13(+)) in ESI-MS and exchanges relatively few hydrogens. In 35-40% methanol, at which an intermediate is formed, there is a bimodal distribution of hMb ions with both low (9(+)-13(+)) and high (14(+)-23(+)) charge states and also a high charge state distribution (12(+)-26(+)) of apomyoglobin (aMb) ions. Low and high charge states of hMb and a high charge state of aMb all show the same H/D exchange rate, indicating that an unfolded hMb intermediate interconverts between folded hMb and unfolded aMb. The charge state distribution for the unfolded hMb intermediate observed here is similar to that of the recently reported transient intermediate formed during the acid denaturation of hMb. At 50% alcohol the protein produces predominantly high charge states of aMb ions and shows H/D exchange rates close to those of the acid-denatured protein. H/D exchange of the helical denatured protein at alcohol concentrations >60%, at which high charge states of aMb are produced, shows that the protein structure is more protected than at approximately 50% methanol.
The methanol-induced conformational transitions under acidic conditions for beta-lactoglobulin, cytochrome c, and ubiquitin, representing three different classes of proteins with beta-sheets, alpha-helices, and both alpha-helices and beta-sheets, respectively, are studied under equilibrium conditions by electrospray ionization mass spectrometry (ESI-MS). The folding states of proteins in solution are monitored by the charge state distributions that they produce during ESI and by hydrogen/deuterium (H/D) exchange followed by ESI-MS. The changes in charge state distributions are correlated with earlier studies by optical and other methods which have shown that, in methanol, these proteins form partially unfolded intermediates with induced alpha-helix structure. Intermediate states formed at about 35% methanol concentration are found to give bimodal charge state distributions. The same rate of H/D exchange is shown by the two contributions to the bimodal distributions. This suggests the intermediates are highly flexible and may consist of a mixture of two or more rapidly interconverting conformers. H/D exchange of proteins followed by ESI-MS shows that helical denatured states, populated at around 50% methanol concentration, transform into more protected structures with further increases in methanol concentration, consistent with previous circular dicroism studies. These more protected structures still produce high charge states in ESI, similar to those of the fully denatured proteins.
Near pH 2.0, lysozyme in water is in its native conformation, and in water/methanol (2/8) it adopts a helical denatured conformation (Kamatari et al. Protein Sci. 1998, 7, 681-688). Hydrogen/deuterium (H/D) exchange of lysozyme in solution confirms that it is partially unfolded at pH 2.0 in water/methanol (v/v = 2/8). With electrospray ionization (ESI) mass spectrometry (MS), lysozyme in water produces ions with charges +7 to +12, with the greatest intensity at +10, whereas lysozyme in water/methanol (2/8) produces ions with charges +6 to +12 with the greatest intensity at +7. Thus, lysozyme is an exception to the rule that a protein denatured in solution forms higher charge states than the same protein in its folded native conformations in solution. Because the same charge states are produced from these two solution conformations, a direct comparison of the properties of the gas-phase ions produced from two very different solution conformations is possible. The conformations of lysozyme ions in the gas phase were studied using cross section measurements and gas-phase H/D exchange. Similar cross sections and H/D exchange levels were observed for same-charge states of lysozyme ions formed from the native and helical denatured conformations in solution. Cross sections show that the ions have compact structures. Thus, disulfide-intact gaseous lysozyme ions generated from the denatured state in water/methanol (2/8) refold into compact structures in the gas phase on a time scale of milliseconds or less.
We have studied the alkaline unfolding of bovine liver catalase and its dependence on ionic strength by enzymic activity measurements and a combination of optical methods like circular dichroism, fluorescence and absorption spectroscopies. Under conditions of high pH (11.5) and low ionic strength, the native tetrameric enzyme dissociates into monomers with complete loss of enzymic activity and a significant loss of A-helical content. Increase in ionic strength by addition of salts like potassium chloride and sodium sulphate resulted in folding of alkaline-unfolded enzyme by association of monomers to tetramer but with significantly different structural properties compared to native enzyme. The salt-induced tetrameric intermediate is characterized by a significant exposure of the buried hydrophobic clusters and significantly reduced A-helical content compared to the native enzyme. The refolding/reconstitution studies showed that the salt-induced partially folded tetrameric intermediate shows significantly higher efficiency of refolding/reconstitution as compared to alkaline-denatured catalase in the absence of salts. These studies suggest that folding of multimeric enzymes proceeds probably through the hydrophobic collapse of partially folded multimeric intermediate with exposed hydrophobic clusters.Keywords : bovine liver catalase; alkaline unfolding; monomer ; salts ; refolding.Catalase is a highly active ubiquitous enzyme which occurs The extent of unfolding of denatured states of proteins under different conditions has long been of interest because of the pos-in almost all aerobically respiring organisms and in part serves sible relevance of their conformations to the protein folding to protect the cells from the toxic effects of hydrogen peroxide. pathways. It has been demonstrated that residual structural pref-Bovine liver catalase, molecular mass 240 kDa, contains four erences, ranging from local clusters of side chains to highly or-identical 57-kDa subunits each equipped with a high-spin Fe(III) dered side chains to highly ordered subdomains, persist in dena-protoporphyrin IX [18]. We have investigated the changes in the tured states of proteins [1Ϫ6]. Hence, there has been a growing structural and functional properties associated with the alkaline recognition of the importance of the compact denatured and par-denaturation of bovine liver catalase and also studied its depentially folded states of proteins, as characterization of these struc-dence on ionic strength. tures and the factors involved in their stability would provide important insight into the interactions responsible for their formation as well as their role in protein folding. EXPERIMENTAL PROCEDURES pH is known to influence the stability of a protein by alteringMaterials. Crystalline bovine liver catalase was prepared acthe net charge on the protein. Many proteins denature at extreme cording to the earlier reported method [19]. The purity of the pH because of the presence of destabilizing repulsive interacprotein was checked by SDS/PAGE foll...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.