Differentiation and survival of neurons induced by neurotrophins have been widely investigated, but little has been reported about the long-term effect of brainderived neurotrophic factor (BDNF) on synaptic transmission. Among many steps of neurotransmission, one important step is regulated release of transmitters. Therefore, the release of glutamate and GABA from cortical neurons cultured for several days with or without BDNF was measured by an HPLC-fluorescence method. Although BDNF had little effect on the basal release of glutamate, high K + -evoked release was greatly increased by BDNF. BDNF also tended to increase evoked release of GABA. Recently, several proteins involved in the step of "regulated release" have been identified. Thus, the effect of BDNF on the levels of these proteins was then investigated. Neurons were cultivated with or without BDNF, collected, and electrophoresed for western blotting. BDNF increased levels of synaptotagmin, synaptobrevin, synaptophysin, and rab3A, which were known as vesicle protein. Levels of syntaxin, SNAP-25, and /3-SNAP were also increased by BDNF. In addition, the numbers of cored and clear vesicles in nerve terminals or varicosities were also increased by BDNF. These results raise the possibility that BDNF increases regulated release of neurotransmitters through the up-regulation of secretory mechanisms. Key Words: Brain-derived neurotrophic factor-Neurotrophin-3-Neurotrophin-Exocytosis-Synaptic vesicle-Transmitter release.
NAP-22 is a membrane-localized brain enriched acidic protein having a Ca(2+)-dependent calmodulin binding activity. Further fractionation of the NAP-22 containing membrane showed the localization of NAP-22 in a Triton insoluble fraction of low density. Besides NAP-22, this fraction was found to contain GAP-43 (neuromodulin), trimeric G proteins, and some GPI-anchored proteins such as Thy-1 and N-CAM-120. Presence of some protein tyrosine kinases, such as src and fyn, was also shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.