The theory of branching space-times is designed as a rigorous framework for modelling indeterminism in a relativistically sound way. In that framework there is room for "funny business", i.e., modal correlations such as occur through quantummechanical entanglement. This paper extends previous work by Belnap on notions of "funny business". We provide two generalized definitions of "funny business". Combinatorial funny business can be characterized as "absence of prima facie consistent scenarios", while explanatory funny business characterizes situations in which no localized explanation of inconsistency can be given. These two definitions of funny business are proved to be equivalent, and we provide an example that shows them to be strictly more general than the previously available definitions of "funny business".
Topos-theoretic semantics for modal logic usually uses structures induced by a surjective geometric morphism between toposes. This talk develops an algebraic generalization of this framework. We take internal adjoints between certain internal frames within a topos, which provides semantics for (intuitionistic) higher-oder modal logic.
As McKinsey and Tarski showed, the Stone representation theorem for Boolean algebras extends to algebras with operators to give topological semantics for (classical) propositional modal logic, in which the “necessity” operation is modeled by taking the interior of an arbitrary subset of a topological space. In this article, the topological interpretation is extended in a natural way to arbitrary theories of full first-order logic. The resulting system of S4 first-order modal logic is complete with respect to such topological semantics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.