The r-process, or the rapid neutron-capture process, of stellar nucleosynthesis is called for to explain the production of the stable (and some long-lived radioactive) neutron-rich nuclides heavier than iron that are observed in stars of various metallicities, as well as in the solar system.A very large amount of nuclear information is necessary in order to model the r-process. This concerns the static characteristics of a large variety of light to heavy nuclei between the valley of stability and the vicinity of the neutron-drip line, as well as their beta-decay branches or their reactivity. Fission probabilities of very neutron-rich actinides have also to be known in order to determine the most massive nuclei that have a chance to be involved in the r-process. Even the properties of asymmetric nuclear matter may enter the problem. The enormously challenging experimental and theoretical task imposed by all these requirements is reviewed, and the state-of-the-art development in the field is presented.Nuclear-physics-based and astrophysics-free r-process models of different levels of sophistication have been constructed over the years. We review their merits and their shortcomings. The ultimate goal of r-process studies is clearly to identify realistic sites for the development of the r-process. Here too, the challenge is enormous, and the solution still eludes us. For long, the core collapse supernova of massive stars has been envisioned as the privileged r-process location. We present a brief summary of the one-or multidimensional spherical or non-spherical explosion simulations available to-date. Their predictions are confronted with the requirements imposed to obtain an r-process. The possibility of r-nuclide synthesis during the decompression of the matter of neutron stars following their merging is also discussed.Given the uncertainties remaining on the astrophysical r-process site and on the involved nuclear physics, any confrontation between predicted r-process yields and observed abundances is clearly risky. A comparison dealing with observed r-nuclide abundances in very metal-poor stars and in the solar system is attempted on grounds of r-process models based on parametrised astrophysics conditions. The virtues of the r-process product actinides for dating old stars or the solar system are also
Nuclear astrophysics is that branch of astrophysics which helps understanding the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many longstanding problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas.This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear physics topics which largely pervade nuclear astrophysics. Direct cross-section measurements 7.3.2. Indirect cross-section measurements 7.4. Neutron capture reactions: Experiments 7.5. Thermonuclear reaction rates: Models 7.5.1. Microscopic models 7.5.2. The potential and DWBA models 7.5.3. Parameter fits 7.5.4. The statistical models 8. Selected topics 8.1. Heavy-element nucleosynthesis by the s-and r-processes of neutron captures 8.1.1. Defining the s-process 8.1.2. Defining the r-process 8.1.3. The s-and r-process contributions to the solar-system composition 8.1.4. Astrophysical sites for the s-and r-processes 8.1.5. Heavy elements in low-metallicity stars 8.2. Cosmochronometry 8.2.1. Nucleo-cosmochronology: generalities 8.2.2. The trans-actinide clocks 8.2.3. The 187 Re -187 Os chronometry 8.3. Type-II supernovae 8.3.1. Evolution of massive stars leading to neutrino-driven supernovae 8.3.2. Nucleosynthesis in the hot bubble: Can the r-process occur ? 8.3.3. Signatures of a large-scale mixing of nucleosynthesis products 9. Summary References * The situ...
Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R2 value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10–150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a ‘snapshot’ of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.