When two liquid drops come into contact, they coalesce rapidly, owing to the large curvature and unbalanced surface-tension forces in the neck region. We use an ultra-high-speed video camera to study the coalescence of a pendent and a sessile drop, over a range of drop sizes and liquid viscosities. For low viscosity, the outward motion of the liquid contact region is successfully described by a dynamic capillary-inertial model based on the local vertical spacing between the two drop surfaces. This model applies even when the drops are of different sizes. Increasing viscosity slows down the coalescence when the Reynolds number $\hbox{\it Re}_v \,{=}\,\rho R_{\hbox{\scriptsize\it ave}}\sigma/\mu^2\,{<}\,5000$, where $R_{\hbox{\scriptsize\it ave}}$ is the average of the tip radii of the two similar size drops, $\rho$ is the liquid density, $\sigma$ is the surface tension and $\mu$ the dynamic viscosity. At $\hbox{\it Re}_v\,{\simeq}\,50$, the growth-rate of the neck radius has reduced by a half, which for water corresponds to a drop diameter of only 2\,$\umu$m. For the largest viscosities, the neck region initially grows in size at a constant velocity. The neck curvature also becomes progressively sharper with increasing viscosity. The results are compared to previously predicted power laws, finding slight, but significant deviations from the predicted exponents. These deviations are most probably caused by the finite initial contact radius.
We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.
This review presents recent technological advances in charge-coupled-device ultrahigh-speed video cameras and their applications in experimental fluid mechanics. Following a brief review of the various high-speed camera types, we point out the advantages of the new technology. Then we show examples of how these cameras are leading to new discoveries in the study of free-surface flows, emphasizing the dynamics of drops and bubbles. We specifically review work on the basic singularities occurring when liquid masses come into contact and coalesce, or break apart during the pinch-off of drops or bubbles from a vertical nozzle. We briefly discuss the imaging of cavitation bubbles and finish by outlining future prospects for these sensors.
When a drop impacts on a liquid surface it entraps a small amount of air under its centre as the two liquid surfaces meet. The contact occurs along a ring enclosing a thin disk of air. We use the next-generation ultra-high-speed video camera, capable of 1 million f.p.s. (Etoh et al. 2002), to study the dynamics of this air sheet as it contracts due to surface tension, to form a bubble or, more frequently, splits into two bubbles. During the contraction of the air disk an azimuthal undulation, resembling a pearl necklace, develops along its edge. The contraction speed of the sheet is accurately described by a balance between inertia and surface tension. The average initial thickness of the air sheet decreases with higher impact Reynolds numbers, becoming less than one micron. The total volume of air entrapped depends strongly on the bottom curvature of the drop at impact. A sheet of micro-bubbles is often observed along the original interface. Oguz–Prosperetti bubble rings are also observed. For low Weber numbers (We<20) a variety of other entrapment phenomena appear.
A bubble is slowly grown from a vertical nozzle until it becomes unstable and pinches off. We use ultra-high-speed video imaging, at frame-rates up to 1millionfps, to study the dynamics and shape of the pinch-off neck region. For bubbles in water (Bo≃1.0) the radius of the neck reduces with a power law behavior R∼tα, over more than 2 decades, with an exponent in the range α=0.57±0.03, in good agreement with other available studies, but which is slightly larger than 1∕2 predicted by Rayleigh-Plesset theory. The vertical curvature in the neck increases more slowly than the azimuthal curvature, making the neck profiles more slender as pinch-off is approached. Self-similar shapes are recovered by normalizing the axial coordinate by a separate length scale which follows a different power law, Lz∼tγ, where γ=0.49±0.03. Results for air, He, and SF6 gas are identical, suggesting that the gas density plays a minimal role in the dynamics. The pinch-off in water leaves behind a tiny satellite bubble, around 5μm in diameter and the flow-field inside the liquid is shown to be consistent with simple sink flow. The effects of liquid viscosity on the pinch-off speed and neck shapes, are also characterized. The speed starts to slow down at a viscosity of about 10 times that of water, which corresponds to Reμ≃2000. This also changes the power law, increasing the exponent to α≃1 for viscosities above 70cP (Reμ≃40). For surrounding liquid of viscosity above 10cP, we observe just before pinch-off, that the neck is stretched into a thin filament of air, which then breaks into a stream of microbubbles. In some cases we observe a cascade of bubble sizes. While some of the details differ, our results are in overall agreement with those of Burton, Waldrep, and Taborek [Phys. Rev. Lett. 94, 184502 (2005)], except we do not observe the rupture of the air cylinder as it reduces to 50μm size. For water we observe a continuous necking down to the pixel-resolution of our optical system, which at the largest frame-rates is ∼10μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.