A drop hitting a solid surface, can deposit, bounce or splash. Splashing arises from the breakup of a fine liquid sheet which is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review we focus on recent experimental and theoretical studies, which aim at unraveling the
In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.
When two liquid drops come into contact, they coalesce rapidly, owing to the large curvature and unbalanced surface-tension forces in the neck region. We use an ultra-high-speed video camera to study the coalescence of a pendent and a sessile drop, over a range of drop sizes and liquid viscosities. For low viscosity, the outward motion of the liquid contact region is successfully described by a dynamic capillary-inertial model based on the local vertical spacing between the two drop surfaces. This model applies even when the drops are of different sizes. Increasing viscosity slows down the coalescence when the Reynolds number $\hbox{\it Re}_v \,{=}\,\rho R_{\hbox{\scriptsize\it ave}}\sigma/\mu^2\,{<}\,5000$, where $R_{\hbox{\scriptsize\it ave}}$ is the average of the tip radii of the two similar size drops, $\rho$ is the liquid density, $\sigma$ is the surface tension and $\mu$ the dynamic viscosity. At $\hbox{\it Re}_v\,{\simeq}\,50$, the growth-rate of the neck radius has reduced by a half, which for water corresponds to a drop diameter of only 2\,$\umu$m. For the largest viscosities, the neck region initially grows in size at a constant velocity. The neck curvature also becomes progressively sharper with increasing viscosity. The results are compared to previously predicted power laws, finding slight, but significant deviations from the predicted exponents. These deviations are most probably caused by the finite initial contact radius.
We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.
Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.