Our objective was to investigate the effects of melatonin on the free radical-induced oxidative damage to mitochondria in fetal rat brain. Female Wistar rats on day 19 of pregnancy were used. Melatonin (10 mg/kg) or vehicle (control) was injected intraperitoneally 60 min prior to laparotomy for removal of the fetuses. The mitochondrial fraction was isolated from the fetal rat brain of each group. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured. As indicators of mitochondrial respiratory activity, we determined the respiratory control index (RCI) and the adenosine 5-diphosphate/oxygen (ADP/O) ratio in the presence and absence of 2.5 microM hypoxanthine and 0.02 units/mL xanthine oxidase. Mitochondrial lipid peroxidation was determined by measuring the concentration of thiobarbituric acid reactive substances in fetal brain mitochondria in the presence or absence of 2.5 microM hypoxanthine, 0.02 units/mL xanthine oxidase, and 50 microM FeSO4. The free radical-induced rates of inhibition of mitochondrial RCI and the ADP/O ratio were both significantly lower in the fetal rat brains treated with melatonin compared with those of the controls (RCI, 44.25 +/- 15.02% vs. 25.18 +/- 5.86%, P < 0.01; ADP/O ratio, 50.74 +/- 23.05% vs. 13.90 +/- 7.80%, P < 0.001). The mitochondrial lipid peroxidation induced by free radicals was significantly reduced in the melatonin-treated group compared with the controls (484.2 +/- 147.2%) vs. 337.6 +/- 61.0%, P < 0.01). Pretreatment with melatonin significantly increased the activity of GSH-Px (20.35 +/- 5.27 to 28.93 +/- 11.01 mU/min mg(-1) protein, P < 0.05) in fetal rat brain mitochondria, but the activity of SOD did not change significantly. Results indicate that the administration of melatonin to the pregnant rat may prevent the free radical-induced oxidative mitochondrial damage to fetal rat brain by a direct antioxidant effect and the activation of GSH-Px.
We assessed the effects of melatonin, a powerful scavenger of oxygen free radicals, on ischemia/reperfusion-induced oxidative damage to mitochondria in the rat placenta. In Wistar rats at day 19 of pregnancy, feto-placental ischemia was induced by occluding both utero-ovarian arteries for 20 min. Reperfusion was achieved by releasing the occlusion and restoring circulation for 30 min. Melatonin solution or the vehicle alone was injected intraperitoneally at dose of 10 mg/kg 1 hr before occlusion. Sham-ischemic animals were treated with vehicle. Each group consisted of 10 pregnant rats. We measured placental mitochondrial respiratory control index (RCI; a marker of mitochondrial respiratory activity), the ratio of the added adenosine 5-diphosphate (ADP) concentration to consumption of oxygen during state 3 respiration (ADP/O), and the concentration of thiobarbituric acid reactive substances (TBARS) in each group. RCI and ADP/O were significantly decreased by ischemia/reperfusion, while TBARS were increased. Melatonin prevented these changes. These results indicate that exogenous melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in rat placenta. Melatonin could be useful in treating preeclampsia and possibly other clinical states involving excess free radical production, such as fetal growth restriction and fetal hypoxia.
In preeclampsia, placental production of lipid peroxides is abnormally increased, while placental glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are decreased. Administration of melatonin, a powerful scavenger of oxygen free radicals, also may protect the placenta from free radical-induced damage by increasing the activity of antioxidant enzymes. To test this hypothesis we administered melatonin to pregnant women before they underwent voluntary interruption of pregnancy between 7 and 9 wk of gestation. Melatonin (6 mg) was administered orally at 12:00 hr, and samples of chorion and maternal blood were obtained at the time of the procedure, 1, 2 or 3 hr later. We measured the melatonin concentration in maternal serum and activities of GSH-Px and SOD and levels of melatonin in chorionic homogenates. Melatonin administration was reflected by markedly increased melatonin concentrations in maternal serum and in chorion, with peak levels achieved 1 hr after melatonin administration (serum, 46.87 +/- 10.87 nM/L; chorionic homogenate, 4.36 +/- 1.56 pmol/mg protein). Between 1 and 3 hr after melatonin administration, GSH-Px activity in chorionic homogenates increased significantly (P < 0.001), with peak levels occurring at 3 hr (51.68 +/- 3.22 mU/mg protein per min, 137.3% of GSH-Px activity in untreated control subjects). No significant changes in chorionic SOD activity occurred during the 3-hr post-administration period. These results indicate that exogenous melatonin increases GSH-Px activity in the chorion and thereby may protect indirectly against free radical injury. Melatonin could be useful in treating preeclampsia and possibly other clinical states involving excessive free radical production, such as intrauterine fetal growth retardation and fetal hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.