A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, 4, 5, 8, 9 and 15, members of the ADAMTS gene family, have the ability to degrade a major cartilage proteoglycan, aggrecan, at the specific sites, and thus are called 'aggrecanases'. The expression of these ADAMTS species was examined in human osteoarthritic articular cartilage on reverse transcription-polymerase chain reaction. The results demonstrated the predominant expression of ADAMTS4 in osteoarthritic cartilage, while ADAMTS5 was constitutively expressed in osteoarthritic and normal cartilage. ADAMTS9 was expressed mainly in normal cartilage, whereas no or negligible expression of ADAMTS1, 8 and 15 was observed in either osteoarthritic or normal cartilage. In situ hybridization for ADAMTS4 indicated that chondrocytes in osteoarthritic cartilage expressed the mRNA. Two monoclonal antibodies to ADAMTS4 were developed, and immunolocalized ADAMTS4 to chondrocytes in the proteoglycan-depleted zones of osteoarthritic cartilage, showing a direct correlation with the Mankin scores. Immunoblotting indicated a major protein band of 58 kDa in the chondrocyte culture media and osteoarthritic cartilage tissue homogenates. These data demonstrate that among the six ADAMTS species, ADAMTS4 is mainly expressed in an active form in osteoarthritic cartilage, and suggest that ADAMTS4 may play an important role in the degradation of aggrecan in human osteoarthritic cartilage.
ADAMs (a disintegrin and metalloproteinases) comprise a new gene family of metalloproteinases, and may play roles in cell-cell interaction, cell migration, signal transduction, shedding of membrane-anchored proteins and degradation of extracellular matrix. We screened the mRNA expression of 10 different ADAMs with a putative metalloproteinase motif in synovial tissues from patients with rheumatoid arthritis (RA) or osteoarthritis (OA). Reverse transcription PCR and real-time quantitative PCR analyses indicated that among the ADAMs, ADAM15 mRNA was more frequently expressed in the RA samples and its expression level was significantly 3.8-fold higher in RA than in OA (p < 0.01). In situ hybridization, immunohistochemistry and immunoblotting demonstrated that ADAM15 is expressed in active and precursor forms in the synovial lining cells, endothelial cells of blood vessels and macrophage-like cells in the sublining layer of RA synovium. There was a direct correlation between ADAM15 mRNA expression levels and vascular density in the synovial tissues (r = 0.907, p < 0.001; n = 20). ADAM15 was constitutively expressed in RA synovial fibroblasts and human umbilical vein endothelial cells (HUVECs), and the expression level was increased in HUVECs by treatment with vascular endothelial growth factor (VEGF) 165 . On the other hand, ADAM15 expression in RA synovial fibroblasts was enhanced with VEGF 165 only if vascular endothelial growth factor receptor (VEGFR)-2 expression was induced by treatment with tumor necrosis factor-α, and the expression was blocked with SU1498, a specific inhibitor of VEGFR-2. These data demonstrate that ADAM15 is overexpressed in RA synovium and its expression is up-regulated by the action of VEGF 165 through VEGFR-2, and suggest the possibility that ADAM15 is involved in angiogenesis in RA synovium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.