Isolation by distance is usually tested by the correlation of genetic and geographic distances separating all pairwise populations' combinations. However, this method can be significantly biased by only a few highly diverged populations and lose the information of individual population. To detect outlier populations and investigate the relative strengths of gene flow and genetic drift for each population, we propose a decomposed pairwise regression analysis. This analysis was applied to the well-described one-dimensional stepping-stone system of stream-dwelling Dolly Varden charr (Salvelinus malma). When genetic and geographic distances were plotted for all pairs of 17 tributary populations, the correlation was significant but weak (r(2) = 0.184). Seven outlier populations were determined based on the systematic bias of the regression residuals, followed by Akaike's information criteria. The best model, 10 populations included, showed a strong pattern of isolation by distance (r(2) = 0.758), suggesting equilibrium between gene flow and genetic drift in these populations. Each outlier population was also analysed by plotting pairwise genetic and geographic distances against the 10 nonoutlier populations, and categorized into one of the three patterns: strong genetic drift, genetic drift with a limited gene flow and a high level of gene flow. These classifications were generally consistent with a priori predictions for each population (physical barrier, population size, anthropogenic impacts). Combined the genetic analysis with field observations, Dolly Varden in this river appeared to form a mainland-island or source-sink metapopulation structure. The generality of the method will merit many types of spatial genetic analyses.
1. We examined effects of water temperature on the community structure of a three trophic level food chain (predatory fish, herbivorous caddisfly larvae and periphyton) in boreal streams. We used laboratory experiments to examine (i) the effects of water temperature on feeding activities of fish and caddisfly larvae and on periphyton productivity, to evaluate the thermal effects on each trophic level (species-level experiment), and (ii) the effects of water temperature on predation pressure of fish on abundance of the lower trophic levels, to evaluate how temperature affects top-down control by fish (communitylevel experiment). 2. In the species-level experiment, feeding activity of fish was high at 12°C, which coincides with the mean summer temperature in forested streams of Hokkaido, Japan, but was depressed at 3°C, which coincides with the mean winter temperature, and also above 18°C, which coincides with the near maximum summer temperatures. Periphyton productivity increased over the range of water temperatures. 3. In the community-level experiments, a top-down effect of fish on the abundance of caddisfly larvae and periphyton was clear at 12°C. This effect was not observed at 3 and 21°C because of low predation pressure of fish at these temperatures. 4. These experiments revealed that trophic cascading effects may vary with temperature even in the presence of abundant predators. Physiological depression of predators because of thermal stress can alter top-down control and lead to changes in community structure. 5. We suggest that thermal habitat alteration can change food web structure via combinations of direct and indirect trophic interactions.
A novel molecular orbital method for the calculations of polymer systems with local aperiodic part: The combination of the elongation method with the supercell method Local density of states of aperiodic polymers using the localized orbitals from an ab initio elongation methodThe elongation method, a new approach to calculating the electronic structure of polymers efficiently, is proposed as a model for real polymerization reactions following the normal chain reaction processes of initiation, propagation, and termination. The calculations are carried out by repeating the uniform localization o/wave/unctions with inclusion of the interaction between the end group of the cluster and an attacking molecule. As a first step of this treatment, the validity of our method is examined via application to regular and irregular model polymers consisting of hydrogen molecules at the extended Hiickellevel and comparing the results with those obtained from the conventional variational method. Furthermore, this treatment is performed on the real polymers such as polyethylene and polypropylene stereoisomers, and is proved to be reliable with advantages in computational time and storage. The approach is promising for application to very large systems on which direct variational calculations of the whole system are impossible. Moreover, it should be emphasized that this approach can mimic real reaction coordinates, or can be considered a theoretical synthesis of polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.