Numerous diabetes-management systems and programs for improving glycemic control to meet guideline targets have been proposed, using IT technology. But all of them allow only limited-or no-real-time interaction between patients and the system in terms of system response to patient input; few studies have effectively assessed the systems' usability and feasibility to determine how well patients understand and can adopt the technology involved. DialBetics is composed of 4 modules: (1) data transmission module, (2) evaluation module, (3) communication module, and (4) dietary evaluation module. A 3-month randomized study was designed to assess the safety and usability of a remote health-data monitoring system, and especially its impact on modifying patient lifestyles to improve diabetes self-management and, thus, clinical outcomes. Fifty-four type 2 diabetes patients were randomly divided into 2 groups, 27 in the DialBetics group and 27 in the non-DialBetics control group. HbA1c and fasting blood sugar (FBS) values declined significantly in the DialBetics group: HbA1c decreased an average of 0.4% (from 7.1 ± 1.0% to 6.7 ± 0.7%) compared with an average increase of 0.1% in the non-DialBetics group (from 7.0 ± 0.9% to 7.1 ± 1.1%) (P = .015); The DialBetics group FBS decreased an average of 5.5 mg/dl compared with a non-DialBetics group average increase of 16.9 mg/dl (P = .019). BMI improvement-although not statistically significant because of the small sample size-was greater in the DialBetics group. DialBetics was shown to be a feasible and an effective tool for improving HbA1c by providing patients with real-time support based on their measurements and inputs.
Mobility support for mobile networks will be more important as the mobile Internet becomes increasingly popular. To support mobile networks, the concept of prefix scope binding (PSB) is being discussed in IETF; however, by only applying this concept to Mobile IPv6 (MIP), the problem of packet loss still remains. In this paper, we apply the PSB concept to our proposed protocol, the Hierarchical Mobile IPv6 extension with buffering function (HMIP-B), in which mobility anchor points buffer packets destined to the mobile hosts during handoff. We compare MIP and HMIP-B based on the handoff performance related to mobile networks by computer simulation. The simulation results indicate that our proposal improves the handoff performance in both TCP and UDP communications.
SummaryBackground: Most patients cannot remember their entire medication regimen and occasionally forget to take their medication. Objectives: The objective of the study was to design, develop, and demonstrate the feasibility of a new type of medication self-management system using smartphones with real-time medication monitoring. Methods: We designed and developed a smartphone-based medication self-management system (SMSS) based on interviews of 116 patients. The system offered patients two main functions by means of smartphones: (1) storage and provision of an accurate, portable medication history and medication-taking records of patients; and (2) provision of a reminder to take medication only when the patient has forgotten to take his/her medication. These functions were realized by two data input methods: (a) reading of prescription data represented in two-dimensional barcodes using the smartphone camera and getting the photographic images of the pills; and (b) real-time medication monitoring by novel user-friendly wireless pillboxes. Results: Interviews suggested that a pocket-sized pillbox was demanded to support patient's medication-taking outside the home and pillboxes for home use should be adaptable to the different means of pillbox storage. In accordance with the result, we designed and developed SMSS. Ten patients participated in the feasibility study. In 17 out of 47 cases (36.2%), patients took their medication upon being presented with reminders by the system. Correct medication-taking occurrence was improved using this system. Conclusions: The SMSS is acceptable to patients and has the advantage of supporting ubiquitous medication self-management using a smartphone. We believe that the proposed system is feasible and provides an innovative solution to encourage medication self-management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.