[1] We investigate basin-scale mechanisms regulating anomalies in freshwater content (FWC) in the Beaufort Gyre (BG) of the Arctic Ocean using historical observations and data collected in [2003][2004][2005][2006][2007]. Specifically, the mean annual cycle and interannual and decadal FWC variability are explored. The major cause of the large FWC in the BG is the process of Ekman pumping (EP) due to the Arctic High anticyclonic circulation centered in the BG. The mean seasonal cycle of liquid FWC is a result of interplay between the mechanical (EP) and thermal (ice transformations) factors and has two peaks. One peak occurs around June-July when the sea ice thickness reaches its minimum (maximum ice melt). The second maximum is observed in November-January when wind curl is strongest (maximum EP) and the salt input from the growing ice has not yet reached its maximum. Interannual changes in FWC during [2003][2004][2005][2006][2007] are characterized by a strong positive trend in the region varying by location with a maximum of approximately 170 cm a À1 in the center of EP influenced region. Decadal FWC variability in the period 1950-2000 is dominated by a significant change in the 1990s forced by an atmospheric circulation regime change. The center of maximum FWC shifted to the southeast and appeared to contract in area relative to the pre-1990s climatology. In spite of the areal reduction, the spatially integrated FWC increased by over 1000 km 3 relative to climatology.
We present an analysis of Arctic Ocean hydrographic and sea ice observations from the 1990s, with a focus on the circulation of water that originates in the North Pacific Ocean. Previous studies have shown the presence of two varieties of relatively warm “summer halocline water” in the vicinity of the Chukchi Sea, i.e., the relatively fresh Alaskan Coastal Water (ACW) and the relatively saltier summer Bering Sea Water (sBSW). Here we extend these studies by tracing the circulation of these waters downstream into the Arctic Ocean. We find that ACW is generally most evident in the southern Beaufort Gyre, while sBSW is strongest in the northern portion of the Beaufort Gyre and along the Transpolar Drift Stream. We find that this separation is most extreme during the early mid‐1990s, when the Arctic Oscillation was at historically high index values. This leads us to speculate that the outflow to the North Atlantic Ocean (through the Canadian Archipelago and Fram Strait) may be similarly separated. As Arctic Oscillation index values fell during the later 1990s, ACW and sBSW began to overlap in their regions of influence. These changes are evident in the area north of Ellesmere Island, where the influence of sBSW is highly correlated, with a 3‐year lag, with the Arctic Oscillation index. We also note the presence of winter Bering Sea Water (wBSW), which underlies the summer varieties. All together, this brings the number of distinct Pacific water types in our Arctic Ocean inventory to three: ACW, sBSW, and wBSW.
The spatial pattern of recent ice reduction in the Arctic Ocean is similar to the distribution of warm Pacific Summer Water (PSW) that interflows the upper portion of halocline in the southern Canada Basin. Increases in PSW temperature in the basin are also well‐correlated with the onset of sea‐ice reduction that began in the late 1990s. However, increases in PSW temperature in the basin do not correlate with the temperature of upstream source water in the northeastern Bering Sea, suggesting that there is another mechanism which controls these concurrent changes in ice cover and upper ocean temperature. We propose a feedback mechanism whereby the delayed sea‐ice formation in early winter, which began in 1997/1998, reduced internal ice stresses and thus allowed a more efficient coupling of anticyclonic wind forcing to the upper ocean. This, in turn, increased the flux of warm PSW into the basin and caused the catastrophic changes.
From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O(15 cm s -1 ) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10-15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal Water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific Water is 0.13±0.08 Sv to the east, which is less than 20% of the longterm mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated. 1
The increase in anthropogenic carbon dioxide emissions and attendant increase in ocean acidification and sea ice melt act together to decrease the saturation state of calcium carbonate in the Canada Basin of the Arctic Ocean. In 2008, surface waters were undersaturated with respect to aragonite, a relatively soluble form of calcium carbonate found in plankton and invertebrates. Undersaturation was found to be a direct consequence of the recent extensive melting of sea ice in the Canada Basin. In addition, the retreat of the ice edge well past the shelf-break has produced conditions favorable to enhanced upwelling of subsurface, aragonite-undersaturated water onto the Arctic continental shelf. Undersaturation will affect both planktonic and benthic calcifying biota and therefore the composition of the Arctic ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.