From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O(15 cm s -1 ) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10-15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal Water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific Water is 0.13±0.08 Sv to the east, which is less than 20% of the longterm mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated. 1
Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m−2 gypsum crystals were formed in sea ice at temperatures below −6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.
[1] CTD measurements from the Arctic Ocean 2001 expedition reveal that the cold halocline layer (CHL) has returned to the Amundsen Basin at a position close to that found during the Oden'91 expedition. River water from the Siberian shelves formed a strong freshwater front in the Amundsen Basin, extending from the Gakkel Ridge to the Lomonosov Ridge. Furthermore, we show from model computations that the presence of a CHL may increase winter sea ice growth by 0.25 m over one season compared to a case with a non-existing CHL due to increased vertical heat flux from the warm Atlantic water. The difference in sea ice growth is due to a much shallower winter convection with a CHL present, which is not able to reach into the warm Atlantic layer, resulting in a considerably smaller oceanic heat flux.
Phytoplankton blooms in the Arctic Ocean's seasonal sea ice zone are expected to start earlier and occur further north with retreating and thinning sea ice cover. The current study is the first compilation of phytoplankton bloom development and fate in the seasonally variable sea ice zone north of Svalbard from winter to late summer, using short-term sediment trap deployments. Clear seasonal patterns were discovered, with low winter and pre-bloom phytoplankton standing stocks and export fluxes, a short and intense productive season in May and June, and low Chl a standing stocks but moderate carbon export fluxes in the autumn post-bloom conditions. We observed intense phytoplankton blooms with Chl a standing stocks of >350 mg m−2 below consolidated sea ice cover, dominated by the prymnesiophyte Phaeocystis pouchetii. The largest vertical organic carbon export fluxes to 100 m, of up to 513 mg C m−2 day−1, were recorded at stations dominated by diatoms, while those dominated by P. pouchetii recorded carbon export fluxes up to 310 mg C m−2 day−1. Fecal pellets from krill and copepods contributed a substantial fraction to carbon export in certain areas, especially where blooms of P. pouchetii dominated and Atlantic water advection was prominent. The interplay between the taxonomic composition of protist assemblages, large grazers, distance to open water, and Atlantic water advection was found to be crucial in determining the fate of the blooms and the magnitude of organic carbon exported out of the surface water column. Previously, the marginal ice zone was considered the most productive region in the area, but our study reveals intense blooms and high export events in ice-covered waters. This is the first comprehensive study on carbon export fluxes for under-ice phytoplankton blooms, a phenomenon suggested to have increased in importance under the new Arctic sea ice regime.
[1] Upper bounds of the Denmark Strait deep-water overflow from the Nordic seas into the North Atlantic are estimated using rotating hydraulic theory. The calculations are made for the real bottom topography of the strait and are based on hydrographic sections surveyed during a dedicated field experiment in the area. Results are presented for zero as well as finite (but constant) potential vorticity, and it is shown that the differences in outcome between these two approaches are only minor. The calculated interface configurations are found to be in good agreement with those observed, and the theoretically obtained transports conform with earlier estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.