The study of photocatalytic degradation of phenol was exploited with nano-ZnO as immobilized photocatalysts in a laboratory scale photocatalytic reactor. The photocatalytic degradation mechanism and kinetics of phenol in water were studied using the solid-phase microextraction (SPME) technique. Based on optimized headspace SPME conditions, phenol in water was first extracted by the fibre, which was subsequently inserted into an aqueous system with immobilized photocatalysts (nano-ZnO) exposed to an irradiation source (i.e., ultraviolet A (UVA) lamps). After different irradiation times (5–80 min), four main intermediates of photocatalytic degradation generated on the fibre were determined by GC-MS.
The application of the concepts in oil and gas distillation to membrane desalination process to lower the energy cost for seawater desalination was studied in this paper. Drawing on the close analogy between multistage RO and conventional distillation separation processes, a hybrid membrane processes employing reflux and recycle concepts was developed. Reflux in membrane processes involves taking a portion of the effluent stream on the high pressure side and sending it to the low pressure side of the membrane, while recycle involves taking a portion of the permeate stream on the low pressure side and sending it to the high pressure side of the membrane. A predictive model was developed to study the effect of reflux and recycle on the specific energy consumption (SEC) and permeate quality when compared to conventional systems. In this study, the water permeability coefficients of membranes and brine recycle ratios were investigated. The results show that the SEC for a hybrid membrane processes comprising of RO and NF membrane was lower than conventional methods with the same recovery and feed concentration, suggesting that it is feasible to apply reflux and recycle concepts of distillation on desalination. Through the careful selection of RO membranes and NF membranes, benefits of reflux and recycle can be enjoyed for seawater desalination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.