Video compression has never been more essential than it is today. With the rapid growth of the Internet and the introduction of high-definition media, the need for continual improvements on video coding techniques is vital to keep up with emerging technologies. Dirac video codec is probably new to the video coding researchers, but it has long been a focal point to the open source hobbyist. A recent progress in its development has made Dirac a video compression tool worth considering within video coding research. This paper analyses the performance of Dirac in comparison to the more established H.264 video codec.
Both Wireless Mesh Network (WMN) and WirelessSensor Network (WSN) are multi-hop wireless networks. WMN is an emerging community based integrated broadband wireless network which ensures high bandwidth ubiquitous internet provision to users, while, WSN is application specific and ensures large scale real-time data processing in complex environment. Both these wireless networks have some common vulnerable features which may increase the chances of different sorts of security attacks. Wireless sensor nodes have computation, memory and power limitations, which do not allow for implementation of complex security mechanism.In this paper, we discuss the common limitations and vulnerable features of WMN and WSN, along with the associated security threats and possible countermeasures. We also propose security mechanisms keeping in view the architecture and limitations of both. This article will serve as a baseline guide for the new researchers who are concern with the security aspects of WMN and WSN.
Abstract-The objective of this work is to research and analyse the performance of Cyclic Delay Diversity (CDD) with two transmit antenna on DVB-H systems operating in spatially correlated channel. It is shown in this paper that CDD can achieve desirable transmit diversity gain over uncorrelated channel with or without receiver diversity. However, in reality, the respective signal paths between spatially separated antennas and the mobile receiver is likely to be correlated because of insufficient antenna separation at the transmitter and the lack of scattering effect of the channel. Under this spatially correlated channel, it is apparent that CDD cannot achieve the same diversity gain as obtained under the uncorrelated channel. In this paper, a new upper bound on the pairwise error probability (PEP) of the CDD with spatial correlation of two transmit antennas is derived. The upper bound is used to study the CDD theoretical error performance and diversity gain losses over a generalized spatially correlated Rayleigh channel. This theoretical analysis is validated by the simulation of DVB-H systems with two transmit antennas and the CDD scheme. Both the theoretical and simulated results give the valuable insight that the CDD ability to perform well with a certain amount of channel correlation.Index Terms-Cyclic delay diversity (CDD), DVB-H, pairwise error probability (PEP), spatial correlation, transmit diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.