Transmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.
With the development of wireless technology, two basic wireless network models that are commonly used, known as infrastructure and wireless ad hoc networks (WANETs), have been developed. In the literature, it has been observed that channel contention is one of the main reasons for packet drop in WANETs. To handle this problem, this paper presents a routing protocol named CCBR (Channel Contention Based Routing). CCBR tries to determine a least contended path between the endpoints to increase packet delivery ratio and to reduce packet delay and normalized routing overhead. Moreover, throughout the active data section, each intermediate node computes its channel contention value. If an intermediate node detects an increase in channel contention, it notifies the source node. Then the source node determines another least contended route for transmission. The advantages of CCBR are verified in our NS2-based performance study, and the results show that CCBR outperforms ad hoc on-demand distance vector (AODV) in terms of packet delivery ratio, end-to-end delay, and routing overhead by 4% to 9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.