Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationship among 58 faba bean (Vicia faba L.) genotypes. Fourteen SRAP primer combinations amplified a total of 1036 differently sized well-resolved peaks (fragments), of which all were polymorphic with a 0.96 PIC value and discriminated all of the 58 faba bean genotypes. An average pairwise similarity of 21% was revealed among the genotypes ranging from 2% to 65%. At a similarity of 28%, UPGMA clustered the genotypes into three main groups comprising 78% of the genotypes. The local landraces and most of the Egyptian genotypes in addition to the Sudan genotypes were grouped in the first main cluster. The advanced breeding lines were scattered in the second and third main clusters with breeding lines from the ICARDA and genotypes introduced from Egypt. At a similarity of 47%, all the genotypes formed separated clusters with the exceptions of Hassawi 1 and Hassawi 2. Group analysis of the genotypes according to their geographic origin and type showed that the landraces were grouped according to their origin, while others were grouped according to their seed type. To our knowledge, this is the first application of SRAP markers for the assessment of genetic diversity in faba bean. Such information will be useful to determine optimal breeding strategies to allow continued progress in faba bean breeding.
The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.
Highly sensitive and selective detection of heavy metal ions, such as Hg, is of great importance because the contamination of heavy metal ions has been a serious threat to human health. Herein, we have developed poly-cytosine (polyC)-mediated surface-enhanced Raman scattering (SERS) nanotags as a sensor system for rapid, selective, and sensitive detection of Hg based on thymidine-Hg-thymidine (T-Hg-T) coordination and polyC-mediated Raman activity. The SERS nanotags exploit the mismatched T-T base pairs to capture Hg form T-Hg-T bridges, which induce the aggregation of nanotags giving rise to the drastic amplification in the SERS signals. Moreover, this polyC not only provides the anchoring function to induce the formation of intrinsic silver-cytosine coordination but also engineers the Raman-activity of SERS nanotags by mediating its length. As a result, the polyC-mediated SERS nanotags show an excellent response for Hg in the concentration range from 0.1 to 1000 nM and good selectivity over other metal ions. Given its simple principle and easy operation, the polyC-mediated SERS nanotags, therefore, could serve as a promising sensor for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.