The precise alignment of chromosomes on the metaphase plate prior to the onset of anaphase is essential for ensuring equal segregation of sister chromatids into two daughter cells, and defects in this process potentially cause chromosome instability and tumor progression [1-3]. NDR1 is an evolutionarily conserved serine/threonine kinase whose activity is regulated by MST kinases, Furry (Fry), and MOB [4]. Although the NDR1 signaling pathway is implicated in cell division and morphogenesis in yeast and invertebrates [4-16], the mechanisms of NDR1 activation and the functional significance of the NDR1 pathway in mammalian cells are largely unknown. Here, we show that NDR1 is required for accurate chromosome alignment at metaphase in HeLa cells; depletion of NDR1, Fry, or MST2 caused mitotic chromosome misalignment. Chromosome misalignment in MST2-depleted cells was corrected by expression of active NDR1. The kinase activity of NDR1 increased in early mitotic phase and was dependent on Fry and MST2. We also provide evidence that Fry binds to microtubules, localizes on the spindle, acts as a scaffold that binds to both NDR1 and MOB2, and synergistically activates NDR1 with MOB2. Our findings suggest that MST2-, Fry-, and MOB2-mediated activation of NDR1 is crucial for the fidelity of mitotic chromosome alignment in mammalian cells.
Acotiamide hydrochloride (Z-338) is a member of new class prokinetic agents currently being developed for the treatment of functional dyspepsia (FD). DNA microarray analysis showed that acotiamide altered the expressions of stress-related genes such as gamma-aminobutyric acid (GABA) receptors, GABA transporters and neuromedin U (NmU) in the medulla oblongata or hypothalamus after administration of acotiamide. Therefore, effects of acotiamide on stress-related symptoms, delayed gastric emptying and feeding inhibition, in rats were examined. Acotiamide significantly improved both delayed gastric emptying and feeding inhibition in restraint stress-induced model, but did not affect both basal gastric emptying and feeding in intact rats, indicating that acotiamide exerted effects only on gastric emptying and feeding impaired by the stress. On the other hand, mosapride showed significant acceleration of gastric emptying in intact and restraint stress-induced model, and itopride showed no effect on restraint stress-induced delayed gastric emptying. In addition, gene expression of NmU increased by restraint stress was suppressed by administration of acotiamide, while acotiamide had no effect on delayed gastric emptying induced by an intracerebroventricular administration of NmU, suggesting that the suppressive effect of acotiamide on gene expression of NmU might be important to restore delayed gastric emptying or feeding inhibition induced by restraint stress. These findings suggest that acotiamide might play an important role in regulation of stress response. As stress is considered to be a major contributing factor in the development of FD, the observed effects may be relevant for symptom improvement in FD.
KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naïve T-cell reduced), we show that a point mutation in KDELR1 is responsible for the reduction in the number of naïve T cells in this model owing to an increase in ISR. Mechanistic analysis shows that KDELR1 directly regulates protein phosphatase 1 (PP1), a key phosphatase for ISR in naïve T cells. T-Red KDELR1 does not associate with PP1, resulting in reduced phosphatase activity against eIF2α and subsequent expression of stress responsive genes including the proapoptotic factor Bim. These results demonstrate that KDELR1 regulates naïve T-cell homeostasis by controlling ISR.
RNA-binding motif 10 (Rbm10) is an RNA-binding protein that regulates alternative splicing, but its role in inflammation is not well defined. Here, we show that Rbm10 controls appropriate splicing of DNA (cytosine-5)-methyltransferase 3b (Dnmt3b), a DNA methyltransferase, to regulate the activity of NF-κB-responsive promoters and consequently inflammation development. Rbm10 deficiency suppressed NF-κB-mediated responses in vivo and in vitro. Mechanistic analysis showed that Rbm10 deficiency decreased promoter recruitment of NF-κB, with increased DNA methylation of the promoter regions in NF-κB-responsive genes. Consistently, Rbm10 deficiency increased the expression level of Dnmt3b2, which has enzyme activity, while it decreased the splicing isoform Dnmt3b3, which does not. These two isoforms associated with NF-κB efficiently, and overexpression of enzymatically active Dnmt3b2 suppressed the expression of NF-κB targets, indicating that Rbm10-mediated Dnmt3b2 regulation is important for the induction of NF-κB-mediated transcription. Therefore, Rbm10-dependent Dnmt3b regulation is a possible therapeutic target for various inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.