In the business world, the need for the availability of goods is critical, especially in motorcycle workshops. The goods availability is related to problems with customer trust, loss of capital, and storage warehouse capacity. Therefore, the ability of decision makers to predict the number of sales in the coming period is essential to be able to determine the procurement of goods more precisely. There is a method called Auto-Regressive Integrated Moving Average (ARIMA). This method is one model that can be used to forecast sales based on sales time series data in previous periods. The forecasting implementation with the ARIMA model can be done using the Pmdarima 1.1.0 library for Python. The test in this study uses sales data of 62 motorcycle parts from January 2017 to February 2019. Forecasting is done to help decision-makers in determining the amount of procurement of goods to meet the sales of the next three periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.