Aim: The objective of the present study was to test the immunostimulating potential of marine macroalga, Caulerpa scalpelliformis, in terms of non-specific immune responses, gene expression, and disease resistance of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758).
Materials and Methods: O. niloticus was injected intraperitoneally with three different doses of methanol extract of C. scalpelliformis (CSME) (2 mg/kg, 20 mg/kg, or 200 mg/kg body weight), or MacroGardTM (commercial immunostimulant, positive control, and 20 mg/kg body weight), or distilled water (untreated control). In one set of fish, 5 days post-injection, serum lysozyme, myeloperoxidase, and antiprotease activities were assayed. 24 h after injection, gene expression was analyzed in a separate set of fish. To another set of fish, 1 week post-administration of the products, fish were challenged with lethal dose 50 (LD50) dose of a live virulent pathogen, Aeromonas hydrophila and subsequent resistance to it was noted in terms of cumulative percent mortality.
Results: CSME increased serum lysozyme, myeloperoxidase, and antiprotease activities. There was an increase in the expression of lysozyme gene in the spleen of treated fish. Mid dose of CSME caused the minimum mortality of 10% (consequent relative percentage survival = 73) which is comparable to that of the positive control.
Conclusion: CSME is considered to have the potential to be developed into an immunostimulant for finfish aquaculture.
Summary
Polysaccharides (PF) from marine macroalgae, Caulerpa scalpelliformis were extracted and tested for its potential immunostimulatory and disease resistance properties in fish. Five groups of Nile tilapia (n = 6), Oreochromis niloticus (Linnaeus, 1758) were intraperitoneally administered with the different doses of PF (2, 20 or 200 mg/kg body weight) or with yeast‐derived commercial immunostimulant, Macrogard™ (20 mg/kg body weight), to compare the effectiveness. An untreated control group was also maintained. A total of fifteen fibre reinforced plastic tanks (150 L, ambient temperature and light conditions) were used, with triplicate tanks for each group. Only four fish per tank (totally 12 fish from a group) were taken at random and assayed. PF enhanced all the tested non‐specific serum immune responses namely lysozyme, myeloperoxidase, antiprotease, and bactericidal activities. There was an upregulation of the genes encoding IL‐1β, lysozyme and TNF‐α in the spleen of PF injected fish as compared to the control group. In order to study the overall functional immunity, disease resistance test was conducted. Another five groups of fish (n = 10) were treated by intraperitoneal injection with different doses of PF or Macrogard™ or untreated as mentioned earlier in triplicates (30 fish per group in three tanks, totally 150 fish in 15 tanks). Seven days post treatment, fish were challenged by intraperitoneal administration of live virulent Aeromonas hydrophila. PF treated fish were protected with significant reduction in the mortality and the consequent increased relative percent survival (RPS) of 92 in the least (2 mg/kg) and middle dose (20 mg/kg) groups. The disease resistance experiment was repeated again but this time, fish were challenged 21 days post treatment that resulted in RPS of 50 for the middle dose. The results clearly show that the intraperitoneal administration of the polysaccharide fraction had a stimulating effect on the non‐specific immune responses, immune gene expression and disease resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.