This paper describes a novel hand gesture recognition system that utilizes both multi-channel surface electromyogram (EMG) sensors and 3D accelerometer (ACC) to realize user-friendly interaction between human and computers. Signal segments of meaningful gestures are determined from the continuous EMG signal inputs. Multi-stream Hidden Markov Models consisting of EMG and ACC streams are utilized as decision fusion method to recognize hand gestures. This paper also presents a virtual Rubik's Cube game that is controlled by the hand gestures and is used for evaluating the performance of our hand gesture recognition system. For a set of 18 kinds of gestures, each trained with 10 repetitions, the average recognition accuracy was about 91.7% in real application. The proposed method facilitates intelligent and natural control based on gesture interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.