As an emerging decentralized secure data management platform, blockchain has gained much popularity recently. To maintain a canonical state of blockchain data record, proof-ofwork based consensus protocols provide the nodes, referred to as miners, in the network with incentives for confirming new block of transactions through a process of "block mining" by solving a cryptographic puzzle. Under the circumstance of limited local computing resources, e.g., mobile devices, it is natural for rational miners, i.e., consensus nodes, to offload computational tasks for proof of work to the cloud/fog computing servers. Therefore, we focus on the trading between the cloud/fog computing service provider and miners, and propose an auction-based market model for efficient computing resource allocation. In particular, we consider a proof-of-work based blockchain network, which is constrained by the computing resource and deployed as an infrastructure for decentralized data management applications. Due to the competition among miners in the blockchain network, the allocative externalities are particularly taken into account when designing the auction mechanisms. Specifically, we consider two bidding schemes: the constant-demand scheme where each miner bids for a fixed quantity of resources, and the multidemand scheme where the miners can submit their preferable demands and bids. For the constant-demand bidding scheme, we propose an auction mechanism that achieves optimal social welfare. In the multi-demand bidding scheme, the social welfare maximization problem is NP-hard. Therefore, we design an approximate algorithm which guarantees the truthfulness, individual rationality and computational efficiency. Through extensive simulations, we show that our proposed auction mechanisms with the two bidding schemes can efficiently maximize the social welfare of the blockchain network and provide effective strategies for the cloud/fog computing service provider.
Mobile security has become more and more important due to the boom of mobile commerce (m-commerce). However, the development of m-commerce is facing many challenges regarding data security problems. Recently, blockchain has been introduced as an effective security solution deployed successfully in many applications in practice, such as, Bitcoin, cloud computing, and Internet-of-Things. However, the blockchain technology has not been adopted and implemented widely in m-commerce because its mining processes usually require to be performed on standard computing units, e.g., computers. Therefore, in this paper, we introduce a new m-commerce application using blockchain technology, namely, MobiChain, to secure transactions in the m-commerce. Especially, in the MobiChain application, the mining processes can be executed efficiently on mobile devices using our proposed Android core module. Through real experiments, we evaluate the performance of the proposed model and show that blockchain will be an efficient security solution for future m-commerce.
Recently, a higher competition in logistics business introduces new challenges to the vehicle routing problem (VRP). Re-route planning, also known as dynamic VRP, is one of the important challenges. The re-route planning has to be performed when new customers request for deliveries while the delivery vehicles, i.e., trucks, are serving other customers. While the reroute planning has been studied in the literature, most of the existing works do not consider different uncertainties. Therefore, in this paper, we propose two systems, i.e., (i) an offline package pickup and delivery planning with stochastic demands (PDPSD) and (ii) a re-route package pickup and delivery planning with stochastic demands (Re-route PDPSD). Accordingly, we formulate the PDPSD system as a two-stage stochastic optimization. We then extend the PDPSD system to the Re-route PDPSD system with a re-route algorithm. Furthermore, we evaluate performance of the proposed systems by using the dataset from Solomon Benchmark suite and a real data from a Singapore logistics 1company. The results show that the PDPSD system can achieve the lower cost than that of the baseline model. In addition, the Re-route PDPSD system can help the supplier efficiently and successfully to serve more customers while the trucks are already on the road.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.