Due to accurate 3D information, computed tomography (CT), especially cone-beam CT or dental CT, has been widely used for diagnosis and treatment planning in dentistry. Axial images acquired from both medical and dental CT scanners can generate synthetic panoramic images similar to typical 2D panoramic radiographs. However, the conventional way to reconstruct the simulated panoramic images is to manually draw the dental arch on axial images. In this paper, we propose a new fast algorithm for automatic detection of the dental arch. Once the dental arch is computed, a series of synthetic panoramic images as well as a ray-sum panoramic image can be automatically generated. We have tested the proposed algorithm on 120 CT axial images and all of them can provide the decent estimate of the dental arch. The results show that our proposed algorithm can mostly detect the correct dental arch.
Objective: The objective of this study was to develop a micro-computed tomography (micro-CT) scanner machine and software dedicated to the localization of calcification in resected breast tissue specimens in a 3-dimensional image. The micro-CT scanner was designed to be used as a mobile machine, particularly for use in the operating room.Material and Methods: The system was designed to perform a 360-degree scan on a rotating table between the x-ray source and the detector sensor using a cone beam x-ray. The prototype was developed collaboratively between Prince of Songkla University (PSU) and the National Science and Technology Development Agency, Thailand (NSTDA). This was the first prototype for scanning specimens. The overall scan time and the image reconstruction was 5-10 minutes. The machine was tested for safety by PTEC (Electrical and Electronic Product Testing Center of NSTDA).Results: The specification of MiniiScan® and preliminary results of 3D image reconstruction of the resected breast tissue specimen by using the MiniiScan® are present in this report. The study evaluated specimens form 31 patients obtained from June 2016 through January 2018. The average scan time was 10.4 minutes. The turnaround time of the conventional technique was 27.9 minutes. The quality of the 3D images as evaluated by PSU staffs was superior to the conventional x-ray images done with the standard mammogram. The 3D images can display the correct position of calcification and a width between calcification to margins in all directional plane.Conclusion: The 3D images of the prototype intraoperative MiniiScan® scan were superior in quality to the standard mammogram, and had a quicker turnaround time for intraoperative application. Surgeons can use this machine in the operating room instead of relying on the conventional x-rays with a mammogram machine outside the operating theater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.