Maintenance of industrial reactors supported by deep learning driven ultrasound toMography eksploatacja reaktorów przeMysłowych ze wspoMaganieM toMografii ultradźwiękowej i algorytMów głębokiego uczeniaMonitoring of industrial processes is an important element ensuring the proper maintenance of equipment and high level of processes reliability. The presented research concerns the application of the deep learning method in the field of ultrasound tomography (UST). A novel algorithm that uses simultaneously multiple classification convolutional neural networks (CNNs) to generate monochrome 2D images was developed. In order to meet a compromise between the number of the networks and the number of all possible outcomes of a single network, it was proposed to divide the output image into 4-pixel clusters. Therefore, the number of required CNNs has been reduced fourfold and there are 16 distinct outcomes from single network. The new algorithm was first verified using simulation data and then tested on real data. The accuracy of image reconstruction exceeded 95%. The results obtained by using the new CNN clustered algorithm were compared with five popular machine learning algorithms: shallow Artificial Neural Network, Linear Support Vector Machine, Classification Tree, Medium k-Nearest Neighbor classification and Naive Bayes. Based on this comparison, it was found that the newly developed method of multiple convolutional neural networks (MCNN) generates the highest quality images.
The fault diagnosis for maintenance of machines operating in variable conditions requires special dedicated methods. Variable load or temperature conditions affect the vibration signal values. The article presents a new approach to diagnosing rotating machines using an artificial neural network, the training of which does not require data from the damaged machine. This is a new approach not previously found in the literature. Until now, neural networks have been used for machine diagnosis in the form of classifiers, where data from individual faults were required. A new diagnostic parameter rDPNS (Relative Differences Product of Network Statistics) as a function of the machine's shaft order was proposed as a kind of new order spectrum independent of the machine's operating conditions. The presented work analyses the use of the proposed method to diagnose misalignment and unbalance. The results of an experiment carried out in the laboratory demonstrated the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.