Electrical tomography is a non-invasive method of monitoring the interior of objects, which is used in various industries. In particular, it is possible to monitor industrial processes inside reactors and tanks using tomography. Tomography enables real-time observation of crystals or gas bubbles growing in a liquid. However, obtaining high-resolution tomographic images is problematic because it involves solving the so-called ill-posed inverse problem. Noisy input data cause problems, too. Therefore, the use of appropriate hardware solutions to eliminate this phenomenon is necessary. An important cause of obtaining accurate tomographic images may also be the incorrect selection of algorithmic methods used to convert the measurements into the output images. In a dynamically changing environment of a tank reactor, selecting the optimal algorithmic method used to create a tomographic image becomes an optimization problem. This article presents the machine learning method’s original concept of intelligent selection depending on the reconstructed case. The long short-term memory network was used to classify the methods to choose one of the five homogenous methods—elastic net, linear regression with the least-squares learner, linear regression with support vector machine learner, support vector machine model, or artificial neural networks. In the presented research, tomographic images of selected measurement cases, reconstructed using five methods, were compared. Then, the selection methods’ accuracy was verified thanks to the long short-term memory network used as a classifier. The results proved that the new concept of long short-term memory classification ensures better tomographic reconstructions efficiency than imaging all measurement cases with single homogeneous methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.