To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod Eurytemora affinis from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.19′, 17°37.52′; 65°10.14′, 23°14.41′; 58°21.67′, 24°30.83′). Using individuals with known family structure, we investigated within population variation of the reaction norm (genotype and salinity interaction) as a means to measure adaptive capacity. Our main finding was that low salinity has a detrimental effect on development time, the additive effects of high temperature and low salinity have a negative effect on survival, and their interaction has a negative effect on hatching success. We observed no variation in survival and development within populations, and all genotypes had similar reaction norms with higher survival and faster development in higher salinities. This suggests that there is no single genotype that performs better in low salinity or high salinity; instead, the best genotype in any given salinity is best in all salinities. Genotypes with fast development time also had higher survival compared to slow developing genotypes at all salinities. Our results suggest that E. affinis can tolerate close to freshwater conditions also in high temperatures, but with a significant reduction in fitness.
Due to altered biogeochemical processes related to climate change, highly colored dissolved organic carbon (DOC) from terrestrial sources will lead to a water “brownification” in many freshwater systems of the Northern Hemisphere. This will create deteriorated visual conditions that have been found to affect habitat-specific morphological variations in Eurasian perch (Perca fluviatilis) in a previous study. So far, potential drivers and ultimate causes of these findings have not been identified. We conducted a field study to investigate the connection between morphological divergence and polyunsaturated fatty acid (PUFA) composition of perch from six lakes across a gradient of DOC concentration. We expected a decrease in the prevalence of PUFAs, which are important for perch growth and divergence with increasing DOC concentrations, due to the restructuring effects of DOC on aquatic food webs. In general, rate of morphological divergence in perch decreased with increasing DOC concentrations. Proportions of specific PUFAs (22:6n-3, 18:3n-3, 20:5n-3, and 20:4n-6) identified to primarily contribute to overall differences between perch caught in clear and brown-water lakes tended to be connected to overall decline of morphological divergence. However, no overall significant relationship was found, indicating no severe limitation of essential fatty acids for perch inhabiting brown water lakes. We further broaden our approach by conducting a laboratory experiment on foraging efficiency of perch. Therefore, we induced pelagic and littoral phenotypes by differences in habitat-structure and feeding mode and recorded attack rate in a feeding experiment. Generally, fish were less efficient in foraging on littoral prey (Ephemeroptera) when visual conditions were degraded by brown water color. We concluded that browning water may have a strong effect on the forager’s ability to find particular food resources, resulting in the reduced development of evolutionary traits, such as habitat- specific morphological divergence.
Little is known about the ecosystem effects of locally adapted populations. The filter feeding copepod Eurytemora affinis is an abundant and important zooplankton in coastal waters that consist of a cryptic species complex with locally adapted populations. We used a mesocosm setup to investigate population and ecosystem interactions of two populations from the Baltic Sea with different morphology and life history traits. One population is laterally wider, larger-sized, more fecund, and have higher growth rate than the other. The experimental ecosystems varied in algae community (pelagic algae, and pelagic algae + benthic diatoms) with two resource supply scenarios. Results showed that the large-sized population is a more effective grazer. In low resource supply the small-sized population starved, whereas the large-sized population was unaffected, resulting in a larger population increase of both nauplii and copepodites than for the small-sized population. Addition of benthic diatoms to the pelagic algae community had much more negative effects on the reproduction of the large-sized population. This suggests that the large-sized population feeds near benthic to a greater extent than the small-sized population, and that filamentous benthic diatoms interfere with the grazing process. Despite the negative effects of benthic diatoms, the large-sized population could maintain similar or higher reproduction than the small-sized population. In addition, the high grazing efficiency of the large-sized population resulted in a different community composition of algae. Specifically, flagellated species and small sized benthic diatoms were more grazed upon by the large-sized population. Our results show that morphologically divergent, yet phylogenetically closely related zooplankton populations can have different ecosystem functions, and in turn have different population increase in response to resource supply and algae community.
Catch‐per‐unit‐effort is often used as an approximation of population size. However, for the management and conservation of populations, information about the number of individuals is fundamental. Pike, Esox lucius L., is a popular fish species for recreational anglers. In this study, data in the form of journal keeping by anglers were used: date; place; and photographs of the captured fish; pike were identified based on their natural markings in combination with length measurements. The data were analysed by spatial capture–recapture (SCR) models. Results showed that a small and densely vegetated lake (6.7 ha) in south‐eastern Sweden had a population size of 91 (±22 SE) pike ≥60 cm. On one occasion, 10 individuals were caught, that is 11.1% of the population, highlighting that angling may potentially have a substantial impact on the population size. Hopefully, this study can inspire angler–manager collaborations for conservation of fish stocks.
To predict effects of global change on zooplankton populations, it is important to understand how present species adapt to temperature and how they respond to stressors interacting with temperature. Here, we ask if the calanoid copepod Eurytemora affinis from the Baltic Sea can adapt to future climate warming. Populations were sampled at sites with different temperatures. Full sibling families were reared in the laboratory and used in two common garden experiments (a) populations crossed over three temperature treatments 12, 17, and 22.5°C and (b) populations crossed over temperature in interaction with salinity and algae of different food quality. Genetic correlations of the full siblings’ development time were not different from zero between 12°C and the two higher temperatures 17 and 22.5°C, but positively correlated between 17 and 22.5°C. Hence, a population at 12°C is unlikely to adapt to warmer temperature, while a population at ≥17°C can adapt to an even higher temperature, that is, 22.5°C. In agreement with the genetic correlations, the population from the warmest site of origin had comparably shorter development time at high temperature than the populations from colder sites, that is, a cogradient variation. The population with the shortest development time at 22.5°C had in comparison lower survival on low quality food, illustrating a cost of short development time. Our results suggest that populations from warmer environments can at present indirectly adapt to a future warmer Baltic Sea, whereas populations from colder areas show reduced adaptation potential to high temperatures, simply because they experience an environment that is too cold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.