A method for biomolecular recognition is reported using light scattering of a single gold nanoparticle functionalized with biotin. Addition of streptavidin and subsequent specific binding events alter the dielectric environment of the nanoparticle, resulting in a spectral shift of the particle plasmon resonance. As we use single nanoparticles showing a homogeneous scattering spectrum, spectral shifts as small as 2 meV can be detected.
We show that plasmonic nanoresonators composed of two gold nanoparticles change not only the intensity but also the spectral shape of the emission of fluorescent molecules. The plasmonic resonance frequency can be tuned by varying the distance between the nanoparticles, which allows us to selectively favor transitions of a fluorescent molecule to a specific vibrational ground state. Experimental data from correlated scattering and fluorescence microscopy agree well with calculations in the framework of generalized Mie theory. Our results show that the widely used description of a dye molecule near a metal surface as a mere two-level system is inadequate.
Molecular sensors based on scattering spectroscopy of single gold nanoparticles can be improved three-fold by the use of gold nanoshells
instead of solid gold nanoparticles. The particle plasmon resonance responds more sensitively to changes in the environment, the biological
spectral window is accessible, and the scattering spectra show sharper resonances. In particular, we focus our discussion on the narrow
homogeneous line width of only 180 meV.
We report the first homogeneous sandwich immunoassay with gold nanoparticles (AuNPs) as fluorescence quenchers. The sandwich assay is designed for the detection of the protein cardiac troponin T (cTnT) by its simultaneous interaction with two different antibodies, one attached to AuNPs and the other labeled with fluorescent dyes. We demonstrate the working principle of the assay and using time-resolved fluorescence spectroscopy, we determine the quenching efficiency of the gold nanoparticles. In spite of the relatively large separation distance between dye molecules and AuNPs, ranging from 3 to 22 nm, the AuNPs quench the fluorescence with efficiencies as high as 95%. A limit of detection of 0.02 nM (0.7 ng/mL) was obtained for cTnT, which is the lowest value reported for a homogeneous sandwich assay for cTnT. These results illustrate the use of metallic nanoparticles as fluorescence quenchers in immunoassays where the large biomolecules involved impose distances for which energy transfer between fluorophores would be inefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.