ObjectiveAcute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men.MethodsEleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count.ResultsEach bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL).Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion.ConclusionsRepeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body.
Osteoporosis and associated low energy fractures are a significant clinical problem, especially in the elderly population. The occurrence of a hip fracture is associated with significant mortality and a high risk of disability. For this, apart from the treatment of osteoporosis, effective prevention of both the development of the disease and related fractures is extremely important. One aspect of osteoporosis prevention is proper dietary calcium intake and normal vitamin D3 levels. However, there is some evidence for a potential role of vitamin C in osteoporosis and fracture prevention, too. This review aims to summarize the current knowledge about the role of vitamin C in osteoporosis development, prevention and treatment. The PubMed/Medline search on the role of vitamin C in bone metabolism database was performed for articles between 2000 and May 2020. Reports from in vitro and animal studies seem promising. Epidemiological studies also indicate the positive effect of high vitamin C content in the daily diet on bone mineral density. Despite promising observations, there are still few observational and intervention studies and their results do not allow for unequivocal determination of the benefits of high daily intake of vitamin C or its long-term supplementation.
Strenuous exercise increases circulating cell free DNA (cfDNA) and stimulates blood phagocytes to generate reactive oxygen species (ROS) which may induce DNA strand breaks. We tested whether: (A) elevated cfDNA in response to three repeated bouts of exhaustive exercise has decreased integrity; (B) each bout of exercise increases luminol enhanced whole blood chemiluminescence (LBCL) as a measure of ROS production by polymorphonuclear leukocytes. Eleven men performed three treadmill exercise tests to exhaustion separated by 72 hours of resting. Pre- and post-exercise concentrations and integrity of cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) and resting (r) and fMLP (n-formyl-methionyl-leucyl-phenylalanine)-stimulated LBCL were determined. Each bout increased concentrations of cf n-DNA by more than 10-times which was accompanied by about 2-times elevated post-exercise rLBCL and fMLP-LBCL. Post-exercise cf n-DNA integrity (integrity index, I229/97) decreased after the first (0.59 ± 0.19 vs. 0.48 ± 0.18) and second (0.53 ± 0.14 vs. 0.44 ± 0.17) bout of exercise. There were negative correlations between I229/97 and rLBCL (ƍ = –0.37), and I229/97 and fMLP-LBCL (ƍ = –0.40) – analysis of pooled pre- and post-exercise data (n = 66). cf mt- DNA integrity (I218/78) did not alter in response to exercise. This suggests an involvement of phagocyte ROS in cf n-DNA strand breaks in response to exhaustive exercise.
During cardiac surgery under CPB, heparin and protamine titration with the Hepcon/HMS device could predict a lower protamine dose and lower postoperative bleeding without higher thromboembolic events, and lower perioperative red blood cell transfusion with a shorter chest closure time.
Gout, known as “the disease of the kings”, is the most frequent type of arthritis. It results from sustained hyperuricemia that leads to monosodium urate crystal deposition in joint structures and soft tissue. Environmental factors such as diet affect the incidence of gout; there is a known relationship between the occurrence of an acute attack of gout and the consumption of alcohol and meat; and a low purine diet is a widely recognized nonpharmacological method of supplementing the treatment and preventing recurrence of arthritis. This review aims to summarize the current knowledge about the role of vitamin C in prevention and treatment of gout. A PubMed/Medline database search on the role of vitamin C in purine metabolism was done. Reports from in vitro and animal studies seem to be promising and to allow explanation of the physiological relationship between vitamin C and uric acid. Most epidemiological studies indicate a significant correlation between high vitamin C intake and lower serum uric acid levels. Despite promising observations, there are few observational and interventional studies, and their results do not clearly define the benefits of a high daily intake of vitamin C in preventing the development and recurrence of gout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.