SynopsisThis paper is a sequel to [1-4]. We consider the problem of G-closure, i.e. the description of the set GU of effective tensors of conductivity for all possible mixtures assembled from a number of initially given components belonging to some fixed set U. Effective tensors are determined here in a sense of G-convergence relative to the operator ∇· D · ∇, of the elements DeU ∈ [5, 6].The G-closure problem for an arbitrary initial set U in the two-dimensional case has already been solved [3, 4]. It remained, however, unclear how to construct, in the most economic way, a composite with some prescribed effective conductivity, or, equivalently, how to describe the set GmU of composites which may be assembled from given components taken in some prescribed proportion. This problem is solved in what follows for a set U consisting of two isotropic materials possessing conductivities D+ = u+E and D− = u−E where 0<u−<u+<∞ and E ( = ii+jj) is a unit tensor.
We derive optimal bounds on the effective conductivity tensor of polycrystalline aggregates by introducing an appropriate null-Lagrangian that is rotationally invariant. For isotropic aggregates of uniaxial crystals an outstanding conjecture of Schulgasser is proven, namely that the lowest possible effective conductivity of isotropic aggregates of uniaxial crystals is attained by a composite sphere assemblage, in which the crystal axis is directed radially outwards in each sphere. By laminating this sphere assemblage with the original crystal we obtain anisotropic composites that are extremal, i.e., attaining our bounds. These, together with other results established here, give a partial characterization of the set of all possible effective tensors of polycrystalline aggregates. The same general method is used to prove a conjectured phase interchange inequality for isotropic composites of two isotropic phases. This inequality correlates the effective conductivity of the composite with the effective tensor when the phases are interchanged. It leads to optimal bounds on the effective conductivity when another effective constant, such as the effective diffusion coefficient, has been measured, or when one has information about ζ1 which is a parameter characteristic of the microgeometry, or when one knows the material is symmetric, i.e., invariant under phase interchange like a three-dimensional checkerboard.
SynopsisThis paper describes the set GmU of effective conductivity tensors of mixtures generated by two isotropic materials taken in prescribed proportions m1 and m2 We describe microstructures which realise any point of GmU for n-dimensional space.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.