In order to proceed along an action sequence, an autonomous agent has to recognize that the intended final condition of the previous action has been achieved. In previous work, we have shown how a sequence of actions can be generated by an embodied agent using a neural-dynamic architecture for behavioral organization, in which each action has an intention and condition of satisfaction. These components are represented by dynamic neural fields, and are coupled to motors and sensors of the robotic agent.Here,we demonstratehowthemappings between intended actions and their resulting conditions may be learned, rather than pre-wired.We use reward-gated associative learning, in which, over many instances of externally validated goal achievement, the conditions that are expected to result with goal achievement are learned. After learning, the external reward is not needed to recognize that the expected outcome has been achieved. This method was implemented, using dynamic neural fields, and tested on a real-world E-Puck mobile robot and a simulated NAO humanoid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.